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Introduction 
 
Genome-wide association studies (GWAS) of breast cancer have been completed among 
populations of European ancestry, and several regions have been identified that appear to 
contribute susceptibility to this cancer. Recent data suggests that not all risk alleles for common 
cancers will be revealed however by studies limited to Whites of European ancestry, and that 
similar efforts in other racial and ethnic populations will be needed to identify the full spectrum of 
common risk alleles that contribute to disease risk in the population. To identify genetic risk 
alleles for breast cancer risk among African American women we have performed a well-
powered whole-genome association scan. For this project we have established a collaborative 
network of investigators whose careers have been dedicated to studying breast cancer in 
minority populations who have contributed samples and covariates from each of their respective 
studies to identify genetic variants that contribute to risk of breast cancer in this minority 
population. We have completed a GWAS of >1.1 SNPs in >3000 African American breast 
cancer cases and >2,700 controls. With these data we have validated and improved upon 
markers of risk at the known breast cancer risk regions that better characterize their contribution 
to breast cancer risk in women of African ancestry. In collaboration with GWAS in populations of 
European ancestry we have also revealed novel risk loci for breast cancer including regions that 
contribute to risk for estrogen receptor (ER)-negative breast cancer. 
 
Body 
 
The Specific Aim of this application was to identify genetic risk alleles for breast cancer among 
African American women by performing a well-powered whole-genome association scan. Here 
we describe the major research accomplishments associated with each task outlined in the 
approved Statement of Work as well as additional novel findings and scientific contributions that 
have emanated from this work. 
 
Task 1: To genotype 1,000,000 single nucleotide polymorphisms (SNPs) using the Illumina 
Infinium 1M technology in 1,000 invasive African American breast cancer cases and 1,000 
African American controls.  
 
With the costs of genotyping decreasing we were able to genotype >3,000 cases and >2,800 
controls. These samples were selected from the studies participating in this effort (Table 1). 
 
Table 1. African American Breast Cancer Studies. 

 



Specific details about genotyping, quality control, statistical analysis and results of the GWAS 
are described in detail below as well as in our recent publication 1 (Chen et al, Human Genetics, 
2012, see Appendix). Tables and Figures that support this work are provided in the attached 
manuscript. 
 
Genotyping in stage 1 was conducted using the Illumina Human1M-Duo BeadChip. Of the 5,984 
samples from these studies (3,153 cases and 2,831 controls), we attempted genotyping of 
5,932, removing samples (n = 52) with DNA concentrations <20 ng/ul. Following genotyping, we 
removed samples based on the following exclusion criteria: 1) unexpected replicates (≥98.9% 
genetically identical) that we were able to confirm through discussions with study investigators 
(only one of each replicate was removed, n = 15); 2) unknown replicates that we were not able 
to confirm (pair or triplicate removed, n = 14); 3) samples with call rates <95% after a second 
genotyping attempt (n = 100); 4) samples with ≤ 5% African ancestry (n = 36) (discussed 
below); and 5) samples with <15% mean heterozygosity of SNPs on the X chromosome and/or 
similar mean allele intensities of SNPs on the X and Y chromosomes (n = 6) as these are likely 
to be males. 

We removed SNPs with <95% call rate (n = 21,732) or minor allele frequencies (MAFs) 
<1% (n = 80,193). To assess genotyping reproducibility we included 138 known replicate 
samples; the average concordance rate was 99.95% (>99.93% for all pairs). We also eliminated 
SNPs with genotyping concordance rates <98% based on the replicates (n = 11,701). The final 
analysis dataset included 1,043,036 SNPs genotyped on 3,016 cases and 2,745 controls, with 
an average SNP call rate of 99.7% and average sample call rate of 99.8%. Hardy-Weinberg 
equilibrium (HWE) was not used as a criterion for removing SNPs; none of the SNPs selected 
for replication deviated from HWE in controls in each study (based on a cut-off of p<0.001). 

In stage 1, we utilized STRUCTURE 2 to infer percent African ancestry on an individual 
level. A total of 2,546 ancestry-informative SNPs from the Illumina array were selected based on 
low inter-marker correlation and ability to differentiate between samples of African and 
European descent. In evaluating the distribution of the fraction of African ancestry across the 
stage 1 populations, statistically significant differences (ANOVA p<10-16) were noted. We also 
applied principal components analysis (PCA)  3 to estimate axes of variation among the 5,761 
individuals using the same 2,546 ancestry informative markers. The first eigenvector accounted 
for 10.1% of the variation between subjects, and subsequent eigenvectors accounted for no 
more than 0.5%. Using input genotypes from the HapMap populations, CEU (CEPH Utah), YRI 
(Yoruba), and JPT (Japanese), we determined that the first eigenvector captures clearly 
differentiates Europeans (CEU) and West Africans (YRI) in the HapMap samples. 

In Stage 1, we observed no evidence of inflation of the test statistic (λ = 1.01) for the 
1,043,036 genotyped and 2,067,098 imputed SNPs analyzed in stage 1, and no excess of very 
small p-values beyond what was expected. We observed no SNP to be associated with disease 
status at a genome-wide level of significance (p<5×10-8) in stage 1. The most statistically 
significant association was noted with SNP rs7610073 located in intron 2 of the gene GRM7 
(metabotropic glutamate receptor 7) on chromosome 3p26 (risk allele frequency 0.64; OR per 
allele = 1.22; p = 7.4×10-7). A second signal was also noted ~486 kb upstream of GRM7 
(rs10510333: risk allele frequency = 0.18; OR per allele = 1.24; p = 8.2×10-6). The associations 
with these 2 markers were independent and remained statistically significant when both were 
included in the same model (p-values of 8.3×10-7 and 9.3×10-6, respectively).  
 
Task 2: We will perform follow-up genotyping of a minimum of 13,800 SNPs using an Illumina 
Infinium iSELECT custom SNP array in 2,000 African American breast cancer cases and 2,000 
African American controls. The actual number of SNPs to be examined in stage 2 will depend 
on the per chip/sample genotyping cost when stage 2 genotyping will be conducted. Fewer 



SNPs were genotyped in Stage 2 because a substantially larger number of samples were 
genotyped in Stage 1. 
 
In Stage 2, we genotyped 66 SNPs with association p-values less than 2×10-4 (from Stage 1) for 
replication testing in the stage 2 studies (>3,000 cases and >3,000 controls). None of these 
SNPs replicated with stage 2-wide significance of <0.0008 (0.05/66), but 2 replicated with a p-
value <0.05 and an OR in the same direction as that observed in stage 1. Combining results 
from stages 1 and 2, no SNP achieved genome-wide significance. The smallest combined p-
values were noted for the two SNPs that replicated in stage 2: rs4322600 located ~100 kb 
upstream of the gene GALC (galactosylceramidase) on chromosome 14q31 (risk allele 
frequency = 0.78, OR per allele = 1.18, p = 4.3×10-6) and rs10510333 located ~486 kb upstream 
of GRM7 on chromosome 3p26 (risk allele frequency = 0.18, OR per allele = 1.15, p = 1.5×10-5). 
We found no strong statistical evidence that the associations with these two loci differ by ER 
status (p-values for heterogeneity in case-only testing: rs10510333: p=0.67; rs4322600: 
p=0.85). 
 
Task 3: Case-only analyses will be performed using the combined data from stages 1 + 2 to 
assess potential heterogeneity of allelic effects by disease phenotype (e.g. ER- and/or 
aggressive tumors) using a model for exposure as a function of genotype only for the data from 
the cases.  
 
With only 1,000 ER-negative cases included in Stage 1, in years 3 and 4 we reached out to 
other ongoing GWAS of ER-negative disease in other populations. These efforts to find loci for 
ER-negative disease are described below and in a number of manuscripts (Haiman et al, Nature 
Genetics, 2012 and Siddiq et al, Human Molecular Genetics, in press; see Appendix). 4 
 
Chromosome 5p15 
To search for genetic risk factors for ER-negative breast cancer phenotypes, we initially 
combined results the African American GWAS [AABC: 3,016 cases (1,004 with ER-negative 
disease) and 2,745 controls] with results from a GWAS of triple negative breast cancer in 
women of European ancestry (TNBCC: 1,562 cases and 3,399 controls) (Haiman et al, Nature 
Genetics, 2012, see Appendix). This work took place in years 3 and 4 of the project period. 
In TNBCC, cases were genotyped with the Illumina 660W array. Genotypes of TNBCC cases 
were compared with GWAS data for publicly available controls.  Both studies imputed 
genotypes for common SNPs in Phase 2 HapMap populations (release 21) and a total of 
3,154,485 SNPs, genotyped and imputed were analyzed in stage 1 of the meta-analysis. 

We observed little evidence of inflation in the test statistics in AABC (λ=1.01), TNBCC 
(λ=1.04) or in the meta-analysis of the two GWAS (λ=1.02). In the combined results, only SNP 
rs10069690 (NCBI36/hg18, chr5:1,332,790) located in intron 4 of the TERT gene at 
chromosome 5p15 displayed a genome-wide significant association with ER negative breast 
cancer (AABC: OR per allele=1.32, p=1.3x10-6; TNBCC: OR=1.25, p=1.2x10-3; combined OR 
=1.29, p=1.0x10-8). To further confirm the association at 5p15, we genotyped SNP rs10069690 
in women of European ancestry, which included 8,365 cases (1,359 ER negatives) and 10,935 
controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3) and 6,182 cases 
(933 ER negatives) and 5,966 controls from Studies of Epidemiology and Risk Factors in 
Cancer Heredity (SEARCH).  Evidence for replication was observed for rs10069690 and ER 
negative breast cancer in both studies (BPC3: OR=1.09, p=0.072; SEARCH: OR=1.21, 
p=6.9x10-4). 

In an analysis of ER positive cases, rs10069690 was only weakly associated with risk in 
African Americans (AABC: 1,558 ER positive cases and 2,743 controls with genotype data: 
OR=1.08; p=0.10) and in women of European ancestry (BPC3: 4,890 ER positive cases and 



10,397 controls, OR=1.04, p=0.19; SEARCH: 3,534 ER positive cases and 5,966 controls, 
OR=1.03, p=0.37; combined for all populations: OR=1.04, p=0.03, pHet = 0.69). The statistical 
power to detect an OR of 1.19 (observed for ER negative disease) for ER+ positive disease was 
>99% in the combined sample (9,982 cases and 19,106 controls) assuming the risk allele 
frequency of 0.26 in Europeans. This result suggests that the association with breast cancer 
might be specific for ER negative subtypes (P-value for case-only test of ER negative versus ER 
positive = 1.0x10-4).   

We further stratified the cases by HER2 status to assess whether this region may be a 
risk locus for triple negative disease. In AABC, BPC3 and SEARCH the association with 
rs10069690 was greater for ER/PR/HER2 negative tumors than for ER/PR negative/HER2 
positive tumors, and in combining all studies, including TNBCC, the association with 
rs10069690 was significantly greater for triple negative  disease [3,706 ER/PR/HER2 negative 
cases and 19,728 controls with genotype data, OR=1.25, p=8.6x10-10; 376 ER/PR 
negative/HER2 positive cases and 19,106 controls, OR=1,04, p=0.64, P-value for case-only test 
=0.011]. The association with rs10069690 was also observed to be significantly greater for ER 
negative and triple negative disease at younger ages (<50 years: ER negative, OR=1.32, 
p=7.0x10-9; triple negative, OR=1.47, p=2.4x10-9; P for interaction with age = 0.039 and 3.8x10-

3, respectively). We found no significant association with rs1006960 among ER/PR positive 
cases when stratified by HER2 status [513 ER/PR/HER2 positive cases and 18,126 controls, 
OR=1.08, p=0.30; 2,808 ER/PR positive/HER negative cases and 18,126 controls, OR=1.03, 
p=0.30], which suggests the association may be limited to triple negative disease and not all 
HER2 negative tumors.   

 
Chromosome 20q11 
In order to identify genetic loci associated with risk of ER-negative breast cancer, we conducted 
a meta-analysis of three GWAS of ER-negative breast cancer, comprising 4,754 cases and 
31,663 controls with further replication in an additional 11,209 cases (946 with ER-negative 
disease) and 16,057 controls (Siddiq et al, Human Molecular Genetics, in press; see Appendix). 
This work took place in year 4 of the study period. 

The meta-analysis included GWAS of ER-negative breast cancer (4,754 ER-negative 
cases and 31,663 controls) from the NCI Breast and Prostate Cancer Cohort Consortium 
(BPC3) (2,188 ER-negative cases and 25,519 controls of European ancestry), the Triple 
Negative Breast Cancer Consortium (TNBCC) (1,562 triple negative cases and 3,399 controls of 
European ancestry) and the African American Breast Cancer Consortium (AABC) (1,004 ER-
negative cases and 2,745 controls). We observed little evidence of over-inflation in the test 
statistics (λ ≤ 1.04 for each study; λ=1.04 for meta-analysis).  A total of 86 SNPs were 
associated with ER-negative breast cancer at P ≤ 10-5.  An in silico replication of the 86 SNPs 
was conducted using GWAS of European (BCAC combined), Latino (MEC-LAT, SFBCS/NC-
BCFR) and Japanese (MEC-JPT) ancestry populations, totaling 11,209 breast cancer cases 
(946 with ER-negative disease) and 8,404 controls (Stage 2).  

Combining results for ER-negative breast cancer from stages 1 and 2, variants in three 
regions showed genome-wide significance [20q11-rs2284378, T allele: odds ratio, OR=1.16, P 
= 1.1x10-8 (PGC = 7.7x10-8; Table 1); 19p13-rs8100241, G allele: OR=1.14, P=3.5x10-8; 6q25-
rs9383938, T allele: OR=1.28, P = 2.37 x 10-10].  Variants at 6q25 have previously been 
associated with breast cancer risk 5, and variants at the 19p13 locus have been associated with 
ER-negative and triple negative breast cancer risk 6,7. The rs2284378 variant at 20q11 is located 
in a region containing RALY (RNA binding protein, autoantigenic), EIF2S2 (eukaryotic 
translation initiation factor 2, subunit 2 beta) and ~100kb upstream of ASIP (agouti signaling 
protein), and is in high linkage disequilibrium (r2=0.96 and D'=1) with rs4911414, which has 
been associated with melanoma and basal cell carcinoma.  8-10 The T allele at rs2284378 was 
associated with an increased ER-negative breast cancer risk (OR>1) in all racial/ethnic 



populations, except Japanese (OR=0.99). However this group had the smallest sample size. 
Furthermore, no significant evidence of heterogeneity was observed by race (P=0.28) or study 
(P=0.54). When the study was extended to include all available breast cancer cases (ER-
positive and ER-negative) and controls from the participating GWAS, rs2284378 showed a 
weaker association with overall breast cancer (OR=1.08, P=1.3x10-6 based on 17,868 cases 
and 43,744 controls) and no evidence for association with ER-positive disease (OR=1.01, 
P=0.67 based on 9,965 cases and 22,902 controls. A case-only analysis of ER-negative versus 
ER-positive breast cancer indicated a highly significant difference in ORs by ER status 
(P=1.3x10-4). Furthermore, rs2284378 appeared more strongly associated with triple negative 
breast cancer (OR=1.16; P=6.4x10-3), than ER-negative, PR-negative, HER2-positive breast 
cancer (OR=1.07, P=0.41), although these differences were not statistically significant (case-
only P=0.44).  

Next, we examined the associations between all candidate loci from stage 1 (n=86 
SNPs) and overall breast cancer risk using all available breast cancer cases and controls from 
the studies in stages 1 and 2. We identified genome-wide statistically significant associations 
with variants at 6q25 (rs9383938, T allele: OR=1.20; P=8.7x10-14), and a recently reported risk 
locus near the PTHLH gene at 12p11  11 (rs1975930, T allele: OR=1.22; P=1.4x10-13).  In 
addition, we observed genome wide significant associations with multiple variants in a gene-
desert located at 6q14.  Allele C of rs17530068 at 6q14 was associated with increased risk for 
overall breast cancer risk (OR=1.12; P=1.1x10-9; PGC =9.4x10-9) and both ER-positive 
(OR=1.09; P=1.5x10-5) and ER-negative (OR=1.16, P=2.5x10-7) breast cancer.  We observed 
no evidence of risk heterogeneity for rs17530068 by ER status (case-only analysis P=0.53); 
study (Phet=0.16); or race/ethnicity (Phet =0.30).  Furthermore, rs17530068 appeared more 
strongly associated with ER-negative, PR-negative, HER2-positive breast cancer (OR=1.26, 
P=8.0x10-3), than triple negative breast cancer (OR=1.12, P=0.07), although these differences 
were not statistically significant (case-only P=0.17).   
 
Fine-mapping of Known Breast Cancer Risk Loci. This study does not fall under any of the 
Tasks specifically outlined in the Statement of Work however it is a logical extension of our work 
and makes good use of the dense SNP data genome-wide generated in Stage 1 of the scan. A 
manuscript describing these finding is provided in the Appendix (Haiman et al, Human 
Molecular Genetics, 2012). 12  This work started in year 3 and was completed in year 4 of 
the study period. 

We tested common genetic variation at the breast cancer risk loci identified in women of 
European and Asian descent in the stage 1 African American breast cancer sample to identify 
markers of risk that are relevant to this population. More specifically, we examined the index 
variants and conducted fine-mapping of the locus to both improve the current set of risk markers 
in African Americans as well as to identify new risk variants for breast cancer. We then applied 
this information to model breast cancer risk in African American women in attempt to 
characterize the spectrum of genetic risk in this population defined by common variants at the 
known risk loci. 

We tested the 19 validated breast cancer risk variants (referred as “index variants”) at 
1p11, 2q35, 3p24, 5p12, 5q11, 6q25, 8q24, 9p21, 9q31, 10p15, 10q21, 10q22, 10q26, 11p15, 
11q13, 14q24, 16q12, 17q23 and 19p13 in models adjusted for age, study, global ancestry (the 
first 10 eigenvectors) and local ancestry;5,12-17 17 SNPs were directly genotyped, while 2 were 
imputed using MACH (r2>0.98). All 19 variants were common (≥0.05) in African Americans, with 
11 variants being more common in Europeans than African Americans. In previous GWAS, the 
index signals had very modest odds ratios (1.05-1.29 per copy of the risk allele) and our sample 
size provided ≥70% statistical power to detect the reported effects for 12 of the 19 variants (at 
P<0.05). We observed positive associations with 11 of the 19 variants (OR >1) however only 4 
were statistically significant (P<0.05 at 2q35, 9q31, 10q26 and 19p13). Of the 15 variants that 



were not replicated at P<0.05, statistical power was <70% for only 7 of the variants. Although 
power was more limited, we also evaluated associations by estrogen receptor (ER) status as 
some risk variants have been found to be more strongly associated with ER-positive (ER+) or 
ER-negative (ER-) breast cancer. We observed positive associations with 12 variants (2 at 
P<0.05) for ER+ disease (n=1,520) and with 9 variants for ER- (3 at P<0.05; n=988). For only 
one variant did we observe statistically significant risk heterogeneity by ER status (rs13387042 
at 2q35, P=0.013).  

Aside from statistical power, the lack of a statistically significant association with an 
index variant (OR>1 and p<0.05) suggests that the particular variant revealed in the GWAS 
populations may not be adequately correlated with the biologically relevant allele in African 
Americans. In an attempt to identify a better genetic marker of risk in African Americans we 
conducted fine-mapping across all risk regions using genotyped SNPs on the Illumina 1M array 
and imputed SNPs to Phase 2 HapMap populations. Through fine-mapping we revealed 
markers in four regions that were more significantly associated with risk than the index signal 
(>1 order of magnitude change in the p-value) and are likely capturing the same signal (2q35, 
5q11, 10q26 and 19p13). We also identified markers in four regions that are not correlated with 
the index signal in the GWAS populations (8q24, 10q22, 11q13 and 16q12) and may represent 
putative novel risk variants, with one being specific for ER+ disease (8q24). These regions are 
discussed below. 

 
Risk variants that better define the index signal in African Americans 
2q35 
The index signal at 2q35 was statistically significantly associated with risk of overall breast 
cancer (rs13387042: OR=1.12, P=7.5×10-3) and ER+ disease (OR=1.22, P=2.6×10-4). However, 
we found stronger associations with two markers that are each modestly correlated with the 
index signal in CEU and YRI: rs13000023 with overall breast cancer (OR=1.20, P=5.8×10-4) and 
rs12998806: with ER+ disease (OR=1.39, P=3.3×10-6). The signal in this region appeared 
limited to ER+ breast cancer, which is consistent with the initial report of this risk locus. 15 
5q11 
We found a positive non-significant association with the index signal at 5q11, which is located 
79 kb centromeric of the MAP3K1 gene (rs889312: OR=1.07, P=0.084). Fine-mapping revealed 
statistically significant associations with markers, rs16886165 for overall breast cancer 
(OR=1.15, P=6.5×10-4) and rs832529 for ER- disease (OR=1.22, P=1.3×10-3). These SNPs 
show greater correlation with the index signal in Europeans (CEU, r2=0.40 and 0.46) than in 
Africans (YRI, r2<0.01 and r2=0.09), which suggests that they may be better markers of the 
biologically functional variant in African Americans.   
10q26 
Both the index signal, rs2981582 (OR=1.11, P=8.6×10-3), and rs2981578, that was identified 
previously through fine-mapping in African Americans (which some of these studies contributed 
to)18, were statistically significantly associated with risk (OR=1.24, P=1.7×10-4). Variant 
rs2981578 was the most strongly associated marker in the region for overall breast cancer and 
for ER+ disease, which is consistent with previous reports of variation in this region being more 
strongly associated with ER+ breast cancer.19 In fine-mapping the locus we observed a 
suggestive association with a correlated marker and ER- disease (rs2912774: OR=1.19, 
P=2.1×10-3) however the association was also noted with ER+ disease (OR=1.10, P=0.041) and 
is likely capturing the same signal as rs2981578. 
19p13 
19p13 was the first risk locus reported to harbor a variant that may be specific for ER- disease.20 
In African Americans, the index variant was statistically significantly associated with risk of 
overall breast cancer (rs2363956: OR=1.14, P=8.0×10-4), as well as ER+ (OR=1.12, P=0.016) 
and ER- disease (OR=1.14, P=0.01). The most significant association in the region for overall 



breast cancer and ER+ disease was with rs3745185 (P=3.7×10-5 and P=8.2×10-4, respectively), 
which is likely to be capturing the same functional variant (r2=0.57 in CEU and 0.19 in YRI). The 
most significant marker for ER- breast cancer was correlated with both rs2363956 and 
rs3745185 (rs11668840: OR=1.25, P=5.1×10-5). 
 
Novel risk-associated markers at breast cancer susceptibility loci. 
8q24 
Given the importance of the 8q24 locus in cancer, we conducted association testing across the 
entire cancer risk region (126.0 Mb-130.0 Mb).21,22 The index signal (rs13281615) was not 
statistically significantly associated with risk in African Americans, nor did we identify significant 
associations with correlated SNPs. However, we did detect a significant association with 
rs16902056 and ER+ breast cancer (risk allele frequency, 0.95; P=6.7×10-6; ER-: P=0.66). This 
SNP is located 78 kb centromeric of the index variant and is not correlated with the index variant 
(r2<0.01 in CEU and r2=0.027 in YRI). No statistically significant associations were observed 
with variants found previously in association with cancers of the bladder and ovary, or leukemia 
(rs9642880: OR=1.03, P=0.58; rs10088218: OR=1.02, P=0.62; rs2456449: OR=1.07, P=0.14). 
Of the known risk variants for prostate cancer we found a single nominally significant (P<0.05) 
association with the same risk allele of rs1016343 (P=0.015) which is located >260 kb 
centromeric of the breast cancer risk region and is not correlated with rs13281615 or 
rs16902056.  
10q22 
We observed no association with the index signal at 10q22 (rs704010) which is located in intron 
1 of the gene ZMIZ1, or with any correlated markers. However, we did detect strong evidence of 
a second signal located 215 kb telomeric in intron 12 of the gene ZMIZ1 (rs12355688: OR=1.24, 
P=6.8×10-6). This putative novel risk variant is not correlated with the index variant in the CEU 
or YRI populations (r2<0.01).  
11q13 
No positive association was noted with the index variant at 11q13. However, we did detect 
evidence of a second independent signal (rs609275: OR=1.20, P=1.0×10-5), located 74 kb 
telomeric, and 53 kb centromeric of CCND1. The variant is monomorphic and uncorrelated with 
the index signal in the CEU population; and r2 with the index signal in the YRI population is 
<0.01.  
16q12 
As in previous studies of African Americans we were not able to replicate the association signal 
defined by the index variant rs3803662.23,24 A recent study of African Americans reported a 
suggestive association with SNP rs3104746, which is located 15 kb telomeric of rs3803662.25 
This SNP has a minor allele frequency of 0.04 in the HapMap CEU population, 0.19 in our 
African American controls, and is modestly correlated with rs3803662 in Africans (r2=0.31 in 
YRI), but not in Europeans (r2=0.038). Fine-mapping around this putative signal revealed a 
perfect proxy (r2=1) for rs3104746, rs3112572, which is significantly associated with breast 
cancer risk in African Americans (OR=1.18, P=3.9×10-4) with the association noted to be 
stronger for ER+ breast cancer (OR=1.27, P=3.1×10-5).  

For index SNPs found to be nominally associated with breast cancer risk, as well as risk-
associated markers identified through fine-mapping, we also tested for associations by 
genotype. Results from the genotype-specific model were consistent with log-additive-
associations. Risk variants at 2q35 and 8q24 were also found to have significantly stronger 
associations with ER+ breast cancer than ER- disease which is consistent with previous 
studies.19 

We observed no statistically significant associations with common variation at 10 risk loci 
on 1p11, 3p24, 5p12, 6q25, 9p21, 10p15, 10q21, 11p15, 14q24 and 17q23.  
 



 
 
Risk modeling 
In this study we also estimated the cumulative effect of all breast cancer risk variants, and 
compared a summary risk score comprised of unweighted counts of all GWAS reported risk 
variants to a risk score that included variants we identified as being associated with risk in 
African Americans. Using the 19 index signals from GWAS, the risk per allele was 1.04 (95% CI, 
1.02-1.06; P=6.1×10-5) and individuals in the top quintile of the risk allele distribution were at 
1.4-fold greater risk (P=7.4×10-5) of breast cancer compared to those in the lowest quartile. As 
expected, the risk score was improved when utilizing the markers that we identified at the 
known risk loci as being more relevant to African Americans (8 alleles for overall breast cancer: 
2q35, 5q11, 9q31, 10q22, 10q26, 11q13, 16q12 and 19p13; OR=1.18; 95% CI, 1.14-1.22; 
P=2.8×10-24), with risk for those in the top quartile being 2.2-times that observed in the lowest 
quintile (P=3.6×10-17). We observed an increase of 1.9 percentage points in the area under the 
curve (AUC) (P=2.6×10-6). This score was significantly associated with risk of both ER+ 
(OR=1.20, P=1.7×10-19) and ER- (OR=1.15, P=2.8×10-9) disease (Phet=0.12).  
 
Future Work to Better Address the Topic: Additional Ongoing Efforts to Reveal Loci for 
Breast Cancer in Women of African Ancestry. 
 
We are currently conducting additional meta-analyses and follow-up genotyping with new 
studies of breast cancer in African ancestry populations. In October of 2012, we will be meta-
analyzing GWAS results from our AABC GWAS with a GWAS of breast cancer in Nigerian 
women (>1,000 cases and >1,000 controls). The 50,000 most significant associations from the 
meta-analysis will be included on a custom iSelect array to be genotyped by the AMBER breast 
cancer consortium (>3,000 cases and >3,000 controls). We expect findings from this work to 
reveal additional loci for overall breast cancer and ER-negative disease that are important for 
women of African ancestry. The custom array will also include SNP content (~80,000 SNPs), for 
fine-mapping of the ~80 known breast cancer risk loci in this population. 
 
Key Research Accomplishments 
 

 Established a consortia to study breast cancer among women of African ancestry 
 Conducted the first genome-wide association study of breast cancer among African 

American women 
 Ruled out common genetic variants with large effects as contributors to breast cancer 

risk in women of African ancestry 
 Pulled together all existing GWAS of ER-negative breast cancer for meta-analysis 
 Identified three susceptibility loci for breast cancer with two being specific for ER-

negative breast cancer 
 Identified a locus for ER-negative breast cancer that contributes to greater risk of ER-

negative disease and triple negative disease in women of African ancestry 
 Via fine-mapping we improved upon markers of risk at known susceptibility loci that 

better characterize their contribution to breast cancer risk in women of African ancestry 
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In addition to the findings above, the GWAS data generated as part of this project have been 
utilized in a number of additional genetic studies in African ancestry populations. These 
projects took place in years 3 and 4 of the study period and some are still ongoing. 
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Conclusion 
 
Genome-wide studies of common and rare genetic variation conducted in multiple populations 
will be required to reveal the complete spectrum of susceptibility alleles that contribute to risk of 
breast cancer globally. In a genome-wide scan of common genetic variation in >3,000 African 
American cases and >2,700 controls, followed by replication testing of the most significant 
associations (p<10-4) in an independent set of  >3,000 cases and >3,000 controls, we identified 
two suggestive associations with breast cancer risk that replicated in stage 2 at p<0.05 
[chromosome 14q31 (p = 4.3×10-6) and 3p26 (p = 1.5×10-5)]; however, these associations did 
not reach the standard level of genome-wide significance. These regions have not been 
highlighted in previous GWAS conducted in other racial/ethnic populations and each association 
requires further validation in additional studies. A strength of the 2-stage GWAS we conducted 
is that it includes most existing case-control studies of breast cancer conducted in women of 
African ancestry. In this 2-stage design, we had 80% statistical power to identify a common risk 
variant (frequency of ≥ 10%) that conveys a risk per allele of 1.3 at genome-wide significance 
(p=5×10-8). Thus, we were able to rule out variants with large effects if they were among the top 
0.007% in stage 1 (and thus taken to stage 2) and were adequately tagged by the common 
SNPs on the 1M array. However, we are likely to have missed some milder associations. In 
previous GWAS of breast cancer in European ancestry populations, most risk variants 
eventually identified were not among the most statistically significant in stage 1 and were only 
revealed through testing of large numbers of SNPs in additional replication stages. To identify 
novel risk loci for overall breast cancer in African ancestry populations will require continued 
collaborative efforts and investigators willing to test larger numbers of SNPs in their respective 
studies. 

In our meta-analyses of GWAS for ER-negative breast cancer we identified three novel 
loci for breast cancer with two being specific for ER-negative disease. SNP rs17530068 at 
chromosome 6q14 was associated with overall breast cancer risk and showed no differential 
association depending on ER status. The association of SNP rs2284378 at 20q11, however, 
was stronger for ER-negative than ER-positive breast cancer. SNP rs10069690 at 5p15 also 
appeared to be more associated with ER-negative and triple negative disease. Identification of 
the variants directly responsible for the association will be required to fully address the extent to 
which these loci contribute to the greater incidence of ER-negative and triple negative tumors in 
women of African ancestry. However, it is notable that the risk allele frequency of rs10069690 is 
greater in African American women (frequency, 0.57) than in women of European ancestry 
(frequency, 0.26). If this variant is an equally good surrogate for the biologically functional allele 
in each population, then this locus may be responsible for a 15% (95% CI, 10-20%) increase in 
the incidence rate of ER negative or triple negative breast cancer in women of African compared 
to European ancestry. Larger studies with well-characterized tumor pathology information will be 
needed to determine if the associations we observed applies other breast cancer subtypes. 
Furthermore, our findings provide further support for the presence of genetic susceptibility to 
ER-negative breast cancer subtypes.  
 
“So What?” 
Identifying new loci associated with ER-negative and triple negative breast cancer will continue 
to provide insight into the biological mechanisms underlying this more aggressive form of breast 
cancer, and could result in improvements in risk prediction and treatment. 
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Abstract Genome-wide association studies (GWAS) in

diverse populations are needed to reveal variants that are

more common and/or limited to defined populations. We

conducted a GWAS of breast cancer in women of African

ancestry, with genotyping of [1,000,000 SNPs in 3,153

African American cases and 2,831 controls, and replication

testing of the top 66 associations in an additional 3,607

breast cancer cases and 11,330 controls of African ances-

try. Two of the 66 SNPs replicated (p \ 0.05) in stage 2,

which reached statistical significance levels of 10-6 and

10-5 in the stage 1 and 2 combined analysis (rs4322600 at

chromosome 14q31: OR = 1.18, p = 4.3 9 10-6; rs10510

333 at chromosome 3p26: OR = 1.15, p = 1.5 9 10-5).

These suggestive risk loci have not been identified in
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previous GWAS in other populations and will need to be

examined in additional samples. Identification of novel risk

variants for breast cancer in women of African ancestry

will demand testing of a substantially larger set of markers

from stage 1 in a larger replication sample.

Introduction

Genome-wide association studies (GWAS) of breast cancer

have been conducted almost exclusively in populations of

European ancestry, and have firmly established associa-

tions with a number of common susceptibility loci that

contribute modest effects (relative risks B1.3) (Ahmed

et al. 2009; Antoniou et al. 2010; Easton et al.

2007;Fletcher et al. 2011; Ghoussaini et al. 2012; Haiman

et al. 2011b; Hunter et al. 2007; Kim et al. 2012; Long

et al. 2012; Stacey et al. 2007, 2008; Thomas et al. 2009;

Turnbull et al. 2010; Zheng et al. 2009b). These discov-

eries provide support for the polygenic model of breast

cancer susceptibility (Pharoah et al. 2002), as well as clues

as to important biological pathways involved in the path-

ogenesis of breast cancer. For example, the most strongly

associated risk locus for breast cancer revealed through

GWAS has been the region containing the fibroblast

growth factor receptor 2 (FGFR2) at chromosome 10q26

(Easton et al. 2007; Hunter et al. 2007; Meyer et al. 2008).

FGFR2 is a member of the FGFR family of receptor

tyrosine kinases (RTKs) which regulate cell proliferation,

differentiation and apoptosis (Tenhagen et al. 2012). The

risk variant on chromosome 14q24 is located in intron 12

of RAD51B which is a member of the RAD51 protein

family. RAD51 proteins are essential for DNA repair by

homologous recombination (Tarsounas et al. 2004), a DNA

repair pathway with an established and important role in

breast cancer development. A more recent study, which

included African American subjects from the current study,

revealed a risk marker at the telomerase reverse trans-

criptase (TERT) locus (Haiman et al. 2011b), a protein that

controls telomere length and is also implicated in onco-

genesis (Kim et al. 1994). Many of the risk variants iden-

tified by GWAS, however, are located in gene deserts, or

near genes with roles in breast cancer etiology that are

currently unknown.

The search for additional low penetrance alleles for

breast cancer in specific racial/ethnic populations has

revealed additional variants that are important globally or

more common and/or limited to defined populations. For

example, a GWAS conducted among Chinese women

identified a novel risk locus for breast cancer near the gene

for the estrogen receptor (ER) on chromosome 6 which had

not been revealed in previous, well-powered GWAS in
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populations of European ancestry (Zheng et al. 2009b).

A GWAS of prostate cancer in men of African ancestry also

identified a novel risk variant at 17q12 that is not observed in

other populations (Haiman et al. 2011a). In search for risk

variants for breast cancer that may be important to women of

African ancestry, we analyzed[1 million common SNPs in

3,153 African American breast cancer cases and 2,831

African American controls, and examined the most statisti-

cally significant associations in a second stage of 3,607 cases

and 11,330 controls of African ancestry.

Materials and methods

Study populations

Stage 1 of the GWAS included African American partici-

pants from 9 epidemiological studies of breast cancer,

comprising a total of 3,153 cases and 2,831 controls (cases/

controls: The Multiethnic Cohort study (MEC), 734/1,003;

The Los Angeles component of The Women’s Contra-

ceptive and Reproductive Experiences (CARE) Study,

380/224; The Women’s Circle of Health Study (WCHS),

272/240; The San Francisco Bay Area Breast Cancer Study

(SFBCS), 172/231; The Northern California Breast Cancer

Family Registry (NC-BCFR), 440/53; The Carolina Breast

Cancer Study (CBCS), 656/608; The Prostate, Lung,

Colorectal, and Ovarian Cancer Screening Trial (PLCO)

Cohort, 64/133; The Nashville Breast Health Study

(NBHS), 310/186; and, The Wake Forest University Breast

Cancer Study (WFBC), 125/153). Replication testing was

conducted in an independent sample of 3,607 breast cancer

cases and 11,330 controls from 9 additional studies of

breast cancer in women of African ancestry (The Black

Women’s Health Study (BWHS), 826/1,167; The

Women’s Insights and Shared Experiences study (WISE),

174/458; NBHS/Southern Community Cohort (SCCS),

981/851; The Nigerian Breast Cancer Study (NBCS),

681/282; The Barbados National Cancer Study (BNCS),

93/244; The Racial Variability in Genotypic Determinants

of Breast Cancer Risk Study (RVGBC), 151/272; The Balti-

more Breast Cancer Study (BBCS), 117/111; The Chicago

Cancer Prone Study (CCPS), 268/261; and, The Women’s

Health Initiative (WHI), 316/7,484).

Sample size and selected characteristics for these studies

are summarized in Supplemental Tables 1 and 2 and

detailed information about the design and organization of

each study is provided in supporting information.

Genotyping and quality control

Genotyping in stage 1 was conducted using the Illumina

Human1M-Duo BeadChip. Of the 5,984 samples from

these studies (3,153 cases and 2,831 controls), we

attempted genotyping of 5,932, removing samples

(n = 52) with DNA concentrations \20 ng/ul. Following

genotyping, we removed samples based on the following

exclusion criteria: (1) unexpected replicates (C98.9 %

genetically identical) that we were able to confirm through

discussions with study investigators (only one of each

replicate was removed, n = 15); (2) unknown replicates that

we were not able to confirm (pair or triplicate removed,

n = 14); (3) samples with call rates \95 % after a second

genotyping attempt (n = 100); (4) samples with B5 % Afri-

can ancestry (n = 36) (discussed below); and (5) samples with

\15 % mean heterozygosity of SNPs on the X chromosome

and/or similar mean allele intensities of SNPs on the X and Y

chromosomes (n = 6) as these are likely to be males.

We removed SNPs with \95 % call rate (n = 21,732)

or minor allele frequencies (MAFs) \1 % (n = 80,193).

To assess genotyping reproducibility, we included 138

known replicate samples; the average concordance rate was

99.95 % ([99.93 % for all pairs). We also eliminated

SNPs with genotyping concordance rates \98 % based on

the replicates (n = 11,701). The final analysis dataset

included 1,043,036 SNPs genotyped on 3,016 cases and

2,745 controls, with an average SNP call rate of 99.7 %

and average sample call rate of 99.8 %. Hardy–Weinberg

equilibrium (HWE) was not used as a criterion for

removing SNPs; none of the SNPs selected for replication

deviated from HWE in controls in each study (based on a

cut-off of p \ 0.001).

We selected 66 SNPs with p values\2 9 10-4 in stage

1 for evaluation in the second stage. These SNPs were

selected from 53 regions following linkage disequilibrium

(LD) pruning of correlated SNPs. Two of these SNPs were

located near a previously validated breast cancer risk locus

[rs12355688 at 10q22, 241 kb downstream of rs704010,

r2 = 0 in both CEU and YRI populations from 1000

Genomes Project (March 2010 release) (Turnbull et al.

2010); and rs3745185 at 19p13, 10 kb downstream of

rs2363956, r2 = 0.57 and 0.19 in the CEU and YRI pop-

ulations from 1000 Genomes Project (March 2010 release),

respectively (Antoniou et al. 2010)]. Genotyping in the

replication studies was performed using the Sequenom

platform (BWHS), OpenArray (WISE and NBHS/SCCS),

the Affymetrix 6.0 SNP array (WHI) (Hutter et al. 2011)

and Illumina GoldenGate (all other studies) (see Support-

ing Information). Blinded duplicate samples (5–10 %)

were included in the replication studies and concordance of

these samples was C98 % in all studies. The number of

SNPs that were genotyped successfully in each stage 2

study ranged from 51 to 63. The average call rate for all

SNPs in stage 2 was 98.8 % (range for call rates of a SNP

within study 71.4–100 %). Call rates by SNP and study are

shown in Supplemental Table 3.
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Estimation of African ancestry

In stage 1, we utilized STRUCTURE (Pritchard et al. 2000)

to infer percent African ancestry on an individual level. A

total of 2,546 ancestry-informative SNPs from the Illumina

array were selected based on low inter-marker correlation

and ability to differentiate between samples of African and

European descent. In evaluating the distribution of the

fraction of African ancestry across the stage 1 populations,

statistically significant differences (ANOVA p \ 10-16)

were noted (Supplemental Figure 1). We also applied

principal components analysis (PCA) (Price et al. 2006) to

estimate axes of variation among the 5,761 individuals

using the same 2,546 ancestry informative markers. The

first eigenvector accounted for 10.1 % of the variation

between subjects, and subsequent eigenvectors accounted

for not more than 0.5 %. Using input genotypes from the

HapMap populations, CEU (CEPH Utah), YRI (Yoruba),

and JPT (Japanese), we determined that the first eigen-

vector clearly differentiates between Europeans (CEU) and

West Africans (YRI) in the HapMap samples (Supple-

mental Fig. 2).

Statistical analysis

We examined the observed versus the expected distribution

of the Chi-squared test statistics using a 1-degree of free-

dom (df) trend test, comparing genotype counts for each

SNP in cases versus controls. All tests of statistical sig-

nificance were two-sided. To improve coverage, we aug-

mented the set of SNPs tested for association through

imputation using MACH (Li and Abecasis 2006). Phased

haplotypes from the 120 CEU and 120 YRI founders in

HapMap Phase 2 were used to infer genotypes of all Phase

2 SNPs that were not available on the Illumina 1M Duo or

did not pass our quality control (QC) criteria. Odds ratios

(OR) and 95 % confidence intervals (CI) for each SNP

were estimated using unconditional logistic regression,

adjusting for age, the first eigenvector and study. The

SFBCS and NC-BCFR studies were conducted in the same

San Francisco Bay Area population and were combined in

all analyses.

In the replication studies, ORs and 95 % CIs for each

SNP were estimated using unconditional logistic regres-

sion, adjusting for age, region within the WHI and esti-

mated genetic ancestry. Ancestry information was

available for all stage 2 studies except WISE (Supporting

Information). Overall testing of single SNP associations

was conducted via meta-analyses of results from the stage

1 and stage 2 studies.

We also conducted combined GWAS and admixture-

based statistical tests to assess the contribution of local

ancestry on the SNP associations. For each subject in our

analysis, we inferred local ancestry, which defines the

proportion of European and African ancestry at each gen-

otyped and imputed SNP. To infer local ancestry in our

GWAS panel of 5,761 African American women, we

applied the program HAPMIX (Price et al. 2009). HAP-

MIX builds a Hidden Markov Model (HMM) using phased

haplotype data that are representative of the two source

populations assumed to be ancestral to the admixed (study)

data. In this case, we provided the same HapMap dataset

that was used for imputation (i.e., 240 CEU ? YRI foun-

der haplotypes per chromosome) as input. HAPMIX

reports posterior probabilities for each subject at each SNP

of carrying 0, 1 and 2 copies of a European allele.

Combined GWAS and admixture-based statistical tests

were conducted to make inferences about regions of the

genome that explain not only case–control differences in

disease risk based on SNP associations, but also risk dif-

ferences based on local genetic ancestry. We utilized the

MIXSCORE program (Pasaniuc et al. 2011) which takes as

input results from a GWAS scan and an admixture scan

(specifically HAPMIX output), and computes several sta-

tistics that incorporate allele frequency information from

both sources of evidence. The SUM score is a 2-df Chi-

squared test that simultaneously tests for association (i.e., a

case–control difference in allele frequency) and admixture

evidence (i.e., a deviation from the genome-wide propor-

tion of European ancestry). The MIX score also tests for

both evidence of admixture and association, but assumes

the odds ratios for admixture and association are equal,

which is potentially more powerful when this assumption is

true since it is a 1-df test.

Results

The stage 1 analysis included 3,016 cases and 2,745 con-

trols among African American women from 9 epidemio-

logical studies of breast cancer. The age of the cases and

controls in stage 1 ranged from 22 to 87 years with the

median ages being 55 and 58 years, respectively (Supple-

mental Table 1). The analysis of the most statistically

significant associations from stage 1 was conducted in

3,533 cases and 11,046 controls from an additional 9

studies. The age of the cases and controls in stage 2 ranged

from 18 to 92 years with the median ages being 50 and

53 years, respectively (Supplemental Table 2).

We observed no evidence of inflation of the test statistic

(k = 1.01) for the 1,043,036 genotyped and 2,067,098

imputed SNPs analyzed in stage 1, and no excess of very

small p values beyond what was expected (Fig. 1). We

observed no SNP to be associated with disease status at a

genome-wide level of significance (p \ 5 9 10-8) in stage

1 (Fig. 2). The most statistically significant association was
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noted with SNP rs7610073 located in intron 2 of the gene

GRM7 (metabotropic glutamate receptor 7) on chromo-

some 3p26 (risk allele frequency 0.64; OR per allele 1.22;

p = 7.4 9 10-7). A second signal was also noted *486 kb

upstream of GRM7 (rs10510333: risk allele frequency 0.18;

OR per allele 1.24; p = 8.2 9 10-6). The associations with

these two markers were independent and remained statisti-

cally significant when both were included in the same model

(p values of 8.3 9 10-7 and 9.3 9 10-6, respectively).

Shown in Table 1 are the genotyped SNPs with p values

\10-5 in stage 1, as well as SNPs that replicated in stage 2

(discussed below).

We selected 66 genotyped SNPs with association p val-

ues less than 2 9 10-4 for replication testing in the stage 2

studies. None of these SNPs replicated with stage 2-wide

significance of\0.0008 (0.05/66), but two replicated with a

p value \0.05 and an OR in the same direction as that

observed in stage 1 (Table 1). Combining results from

stages 1 and 2, no SNP achieved genome-wide signifi-

cance. The smallest combined p values were noted for the

two SNPs that replicated in stage 2: rs4322600 located

*100 kb upstream of the gene GALC (galactosylcerami-

dase) on chromosome 14q31(risk allele frequency 0.78, OR

per allele 1.18, p = 4.3 9 10-6) and rs10510333 located

*486 kb upstream of GRM7 on chromosome 3p26 (risk

allele frequency 0.18, OR per allele 1.15, p = 1.5 9 10-5)

(Table 1). We found no strong statistical evidence that the

associations with these two loci differ by ER status

(p values for heterogeneity in case-only testing:

rs10510333: p = 0.67; rs4322600: p = 0.85).

Using the MIXSCORE program, we simultaneously

tested the null hypothesis of no association and admixture

at each loci defined by the 66 most significant variants

identified in Stage 1. SNP rs7610073, which had the largest

Fig. 1 The distribution of observed versus expected -log10 p values

from stage 1 adjusted for age, study and the first principal component

(PC1)

Fig. 2 A Manhattan plot

showing the -log10 p values

which test for case–control

association to disease for

genotyped and imputed SNPs

by chromosome in stage 1
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MIX score of 24.5 (p = 7.5 9 10-7) also had the smallest

p value in the first stage (Supplemental Table 4). The risk

allele (the ‘‘A’’ allele for rs7610073) was not strongly

differentiated (60 % in HapMap YRI vs. 81 % in HapMap

CEU) and the MIX score p value was almost identical to

the p value from our association scan. Association p values

were generally stronger than the SUM or MIX score, so

admixture did not make a substantive contribution in joint

evidence of admixture and association for these 66 SNPs,

as indicated in Supplemental Table 4. All together, these

findings seem to indicate that the associations at the most

significant loci in Stage 1 are not influenced by differences

in local ancestry between cases and controls, meaning that

any causal variants in these regions are not appreciably

differentiated in frequency between cases and controls.

Discussion

Genome-wide studies of common and rare genetic variation

conducted in multiple populations will be required to reveal

the complete spectrum of susceptibility alleles that con-

tribute to risk of breast cancer globally. In a genome-wide

scan of common genetic variation in [3,000 African

American cases and [2,700 controls, followed by replica-

tion testing of the most significant associations (p \ 2 9

10-4) in an independent set of [3,500 cases and [11,000

controls, we identified two suggestive associations with

breast cancer risk that replicated in stage 2 at p \ 0.05

[chromosome 14q31 (p = 4.3 9 10-6) and 3p26 (p =

1.5 9 10-5)]; however, these associations did not reach the

standard level of genome-wide significance. These regions

have not been highlighted in previous GWAS conducted in

other racial/ethnic populations and each association

requires further validation in additional studies.

Populations of African ancestry have greater genetic

diversity and lower levels of LD among chromosomal loci

(Campbell and Tishkoff 2008; Reed and Tishkoff 2006).

Because of LD patterns and allele frequencies that differ

from non-African populations, GWAS results from Euro-

pean or Asian populations are not always replicable in

populations of African ancestry (Chen et al. 2010; Huo

et al. 2012; Hutter et al. 2011; Ruiz-Narvaez et al. 2010;

Zheng et al. 2009a). Fine mapping of known breast cancer

risk loci in populations of African ancestry has revealed

risk-associated markers that are more relevant to African

populations and contribute to modeling of genetic risk in

this population (Chen et al. 2011; Ruiz-Narvaez et al. 2010;

Udler et al. 2009). Large GWAS in populations of African

ancestry, with proper control of population structure, will

be required to discover additional disease susceptibility

variants that better define the genetic profile of breast

cancer in this population.T
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A strength of the present study is that it includes most

existing case–control studies of breast cancer conducted in

women of African ancestry. In this two-stage design, we

had 80 % statistical power to identify a common risk

variant (frequency of C10 %) that conveys a risk per allele

of 1.3 at genome-wide significance (p = 5 9 10-8). Thus,

we were able to rule out variants with large effects if they

were among the top 0.007 % in stage 1 (and thus taken to

stage 2) and were adequately tagged by the common SNPs

on the 1 M array. However, we are likely to have missed

some milder associations. In previous GWAS of breast

cancer in European ancestry populations, most risk variants

eventually identified were not among the most statistically

significant in stage 1 and were only revealed through

testing of large numbers of SNPs in additional replication

stages. To identify novel risk loci for breast cancer in

African ancestry populations will require continued col-

laborative efforts and investigators willing to test larger

numbers of SNPs in their respective studies.

Our attempt to apply joint admixture and association

mapping, using MIXSCORE, did not provide additional

suggestive risk variants beyond those found using association

methods alone. This suggests that the associations observed at

the most significant regions in Stage 1 are not weakened by

ancestry differences between cases and controls, and thus, the

biologically functional alleles are unlikely to be highly dif-

ferentiated in frequency between cases and controls. Because

of the limited number of ER-negative cases in stage 1

(n = 988) and stage 2 (n = 423), the statistical power to look

at subtypes with rate differences (e.g., ER-negative disease,

more common in African American than European American

women) was limited and not attempted for GWAS or

admixture testing. However, in collaboration with GWAS of

ER-negative breast cancer in European ancestry populations,

which have substantially larger numbers of ER-negative

cases, we have identified a novel locus for ER-negative breast

cancer at 5p15 (TERT) (Haiman et al. 2011b). Genetic vari-

ation at this locus may contribute in part to the higher inci-

dence of ER-negative disease subtypes in women of African

ancestry (frequency of 0.56 in African Americans and fre-

quency of 0.26 in Whites) (Haiman et al. 2011b). As for the

analysis of overall breast cancer, larger studies of breast

cancer in women of African ancestry will be needed to search

for novel risk loci for ER-negative disease subtypes that are

important for and may be limited to this population.

This study is the first genome-wide investigation of

common genetic variation in relationship with breast can-

cer risk in women of African ancestry. The suggestive

associations noted with risk variants at 14q31 and 3p26

require further validation in additional samples of African

ancestry as well as in other populations. Identification of

common risk variants for breast cancer in African ancestry

populations will require testing a larger number of the most

statistically significant SNPs from stage 1 in additional

samples.
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Estrogen	receptor	(ER)-negative	breast	cancer	shows	a	higher	
incidence	in	women	of	African	ancestry	compared	to	women	
of	European	ancestry.	In	search	of	common	risk	alleles	for	ER-
negative	breast	cancer,	we	combined	genome-wide	association	
study	(GWAS)	data	from	women	of	African	ancestry	(1,004	
ER-negative	cases	and	2,745	controls)	and	European	ancestry	
(1,718	ER-negative	cases	and	3,670	controls),	with	replication	
testing	conducted	in	an	additional	2,292	ER-negative	cases	and	
16,901	controls	of	European	ancestry.	We	identified	a	common	
risk	variant	for	ER-negative	breast	cancer	at	the	TERT-CLPTM1L	
locus	on	chromosome	5p15	(rs10069690:	per-allele	odds	
ratio	(OR)	=	1.18	per	allele,	P	=	1.0	×	10−10).	The	variant	was	
also	significantly	associated	with	triple-negative	(ER-negative,	
progesterone	receptor	(PR)-negative	and	human	epidermal	
growth	factor-2	(HER2)-negative)	breast	cancer	(OR	=	1.25,	
P	=	1.1	×	10−9),	particularly	in	younger	women	(<50	years	of	
age)	(OR	=	1.48,	P	=	1.9	×	10−9).	Our	results	identify	a	genetic	
locus	associated	with	estrogen	receptor	negative	breast	cancer	
subtypes	in	multiple	populations.

Compared to women of European ancestry, women of African descent 
are more likely to be diagnosed with ER-negative breast cancer1. ER-
negative tumors and triple-negative tumors are observed at even 
higher rates among African women currently residing in Africa2, 
suggesting a genetic component to the high risk of ER-negative pheno-
types in women of African descent. Similarly, ER-negative breast 
cancers and triple-negative breast cancers are also the predominant 
histological subtypes in women with germline mutations in BRCA1 
(ref. 3). The enrichment for ER-negative disease in this genetically 
predisposed population also suggests the existence of additional 
genetic factors that contribute to the risk of ER-negative disease.  

Support for the presence of these factors was recently provided by 
a GWAS of breast cancer in BRCA1 mutation carriers, in which a  
common risk variant for ER-negative breast cancer on chromosome 
19p13 was identified that also was significantly associated with  
ER-negative and triple-negative disease in the general population4.

To search for genetic risk factors for ER-negative breast cancer pheno-
types, we combined results from a GWAS of breast cancer in African-
American women (African American Breast Cancer Consortium 
(AABC): 3,016 cases (1,004 with ER-negative disease) and 2,745 controls) 
with results from a GWAS of triple-negative breast cancer in women 
of European ancestry (Triple-Negative Breast Cancer Consortium 
(TNBCC): 1,718 cases and 3,670 controls). Genotyping in AABC was 
conducted with the Illumina Infinium 1M Duo. In TNBCC, cases were 
genotyped with the Illumina 660W array, a subset of cases from the 
Mammary Carcinoma Risk Factor Investigation (MARIE) component 
were genotyped using the Illumina CNV370 SNP array, and cases and 
controls from the Helsinki Breast Cancer Study (HEBCS) component 
were genotyped using the Illumina 550-Duo SNP array. Genotypes of 
TNBCC cases were compared with GWAS data for publicly available 
controls (Online Methods). Both studies imputed genotypes for common  
SNPs in phase 2 HapMap populations (release 21) (Supplementary 
Table 1 and Online Methods). A total of 3,154,485 SNPs, genotyped 
and imputed, were analyzed in stage 1 of the meta-analysis.

We observed little evidence of inflation in the test statistics in 
AABC (λ = 1.01) or TNBCC (λ = 1.04) or in the meta-analysis of the 
two GWAS (λ = 1.02; Supplementary Fig. 1). In the combined results, 
only SNP rs10069690 (NCBI36/hg18, chr5:1,332,790) located in 
intron 4 of the TERT gene (encoding telomerase reverse transcriptase) 
at chromosome 5p15 showed a genome-wide significant association 
with ER-negative breast cancer (AABC: OR per allele = 1.32, P = 1.3 ×  
10−6; TNBCC: OR = 1.25, P = 1.2 × 10−3; combined OR = 1.29,  

A common variant at the TERT-CLPTM1L locus is 
associated with estrogen receptor–negative breast cancer

A full list of authors and affiliations appears at the end of the paper.
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table 1 Association of rs10069690 at 5p15 and er-negative breast cancer risk

Stage Consortium or study Cases/controlsa RAFb T allele
Heterozygotes  
OR (95% CI)c

Homozygotes  
OR (95% CI)c

Per-allele  
OR (95% CI)c P value (1-d.f.)d

1 AABC 1,002/2,743 0.57 1.32 (1.05–1.67) 1.74 (1.37–2.21) 1.32 (1.18–1.48) 1.3 × 10−6

1 TNBCC 2,785/1,602 0.27 1.10 (0.97–1.26) 1.53 (1.21–1.95) 1.18 (1.07–1.30) 1.0 × 10−3

2 BPC3 1,289/10,397 0.26 1.08 (0.96–1.22) 1.19 (0.95–1.49) 1.09 (0.99–1.19) 0.077

2 SEARCH 933/5,966 0.26 1.23 (1.06–1.43) 1.44 (1.10–1.89) 1.21 (1.09–1.36) 6.9 × 10−4

Combined 6,009/20,708 1.15 (1.06–1.23) 1.46 (1.29–1.64) 1.18 (1.13–1.25) 1.0 × 10−10

aNumber of cases and controls with genotype data for rs10069690. All subjects were directly genotyped. bRisk allele frequency (RAF) in controls. cAdjusted for age, study and principal  
components in AABC. Adjusted for age and country in TNBCC. Adjusted for age, study and country (European Prospective Investigation into Cancer and Nutrition (EPIC) only) in BPC3. Adjusted 
for age in SEARCH. Combined results are from the meta-analysis. dP for trend (one degree of freedom (1-d.f.)).
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P = 1.0 × 10−8). Whereas SNP rs10069690 was genotyped in AABC, it 
was imputed in TNBCC (R2 = 0.55). To verify the imputed genotypes 
and the significance of the association in TNBCC, we re-genotyped 
rs10069690 in available DNA samples from 2,963 TNBCC cases and 
1,632 study-specific TNBCC controls (Online Methods). Although 
the overlapping samples between the TNBCC GWAS and the re- 
genotyping study showed that the quality of imputation for rs10069690 
in the GWAS was poor (Online Methods), the association with ER-
negative breast cancer for rs10069690 remained statistically signifi-
cant in the larger re-genotyped TNBCC sample (OR = 1.18, P = 1.0 × 
10−3; Table 1 and Fig. 1) and in the new combined results for AABC 
and the re-genotyped TNBCC sample (OR = 1.24, P = 1.6 × 10−8).

To further confirm the association at 5p15, we genotyped SNP 
rs10069690 in women of European ancestry, which included 8,365 
cases (1,359 ER negative) and 10,935 controls from the US National 
Cancer Institute Breast and Prostate Cancer Cohort Consortium 
(BPC3) and 6,182 cases (933 ER negative) and 5,966 controls from 
Studies of Epidemiology and Risk Factors in Cancer Heredity 
(SEARCH). Evidence for replication was observed for rs10069690 
and ER-negative breast cancer in both studies (BPC3: OR = 1.09,  
P = 0.077; SEARCH: OR = 1.21, P = 6.9 × 10−4; Table 1).

In combining the results across all studies (6,009 ER-negative 
cases and 20,708 controls with genotype data), rs10069690 was signi-
ficantly associated with an increased risk of ER-negative breast cancer  
(OR = 1.18, 95% confidence interval (CI), 1.13–1.25; P = 1.0 × 10−10; 
Table 1). The risk for heterozygote and homozygote carriers was 1.15 
(95% CI, 1.06–1.23) and 1.46 (95% CI, 1.29–1.64), respectively. We 
observed little evidence of heterogeneity for the reported associa-
tion for this variant by study or country in AABC (test for hetero-
geneity, phet = 0.86), TNBCC (phet = 0.85) or BPC3 (phet = 0.37;  
Supplementary Table 2).

In an analysis of ER-positive cases, rs10069690 was only weakly 
associated with risk in African Americans (AABC: 1,558 ER-positive 

cases and 2,743 controls with genotype data, OR = 1.08, P = 0.10) 
and in women of European ancestry (BPC3: 4,890 ER-positive cases 
and 10,397 controls, OR = 1.03, P = 0.31; SEARCH: 3,534 ER posi-
tive cases and 5,966 controls, OR = 1.03, P = 0.37; combined for all 
populations: OR = 1.04, P = 0.06, phet = 0.64). The statistical power 
to detect an OR of 1.18 (observed for ER-negative disease) for ER-
positive disease was >99% in the combined sample (9,982 cases and 
19,106 controls), assuming the risk allele frequency of 0.26 in people 
of European decent. This result suggests that the association with 
breast cancer might be specific for ER-negative subtypes (P value for 
case-only test of ER negative versus ER positive = 1.7 × 10−4).

We further stratified the cases by HER2 status to assess whether 
this region may be a risk locus for triple-negative disease. In AABC, 
BPC3 and SEARCH the association with rs10069690 was greater for 
triple-negative tumors than for ER-negative, PR-negative, HER2-
positive tumors (Table 2), and, in combining all studies, including 
TNBCC, the association with rs10069690 was significantly greater for 
triple-negative disease (3,707 triple-negative cases and 19,728 controls  
with genotype data, OR = 1.25, P = 1.1 × 10−9; 376 ER-negative, 
PR-negative, HER2-positive cases and 18,126 controls, OR = 1.03,  
P = 0.71; P value for case-only test = 0.010). The association with 
rs10069690 was also observed to be significantly greater for ER-negative  
and triple-negative disease at younger ages (<50 years: ER negative, 
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Figure 1 A regional plot of the −log10 P values for SNPs at the 
chromosome 5p15 risk locus from the meta-analysis of the AABC and 
TNBCC stage 1 studies. SNP rs10069690 is designated with the purple 
diamonds. The colors depict the strength of the correlation (r2) between 
SNP rs10069690 and the SNPs tested in the region. The correlation is 
estimated using 1000 Genomes Project (1KGP) data for the HapMap 
CEU population (June 2010). Squares are SNPs that were genotyped in 
AABC and TNBCC. Circles are SNPs that were genotyped in one study and 
imputed in the other or imputed in both studies. The blue line indicates 
the recombination rates in centimorgans (cM) per megabase (Mb). Also 
shown are the SNP Build 36 coordinates and genes in the region.

table 2 Association of rs10069690 at 5p15 stratified by Her2 status
Consortium or  
study Subtype Cases/controlsa

Heterozygotes  
OR (95% CI)b

Homozygotes  
OR (95% CI)b

Per-allele  
OR (95% CI)b P value (1-d.f.)c Case-only P

AABCd ER−PR−HER2− 440/2,407 1.35 (0.97–1.89) 1.78 (1.27–2.49) 1.33 (1.14–1.55) 3.0 × 10−4 0.19

ER−PR−HER2+ 115/2,407 1.83 (0.99–3.40) 1.59 (0.82–3.05) 1.15 (0.86–1.52) 0.34

TNBCC ER−PR−HER2− 2,785/1,602 1.10 (0.97–1.26) 1.53 (1.21–1.95) 1.18 (1.07–1.30) 1.0 × 10−3 –

BPC3e ER−PR−HER2− 300/9,753 1.19 (0.93–1.52) 1.64 (1.10–2.46) 1.25 (1.04–1.49) 0.015 0.13

ER−PR−HER2+ 198/9,753 0.99 (0.73–1.33) 0.95 (0.53–1.70) 0.98 (0.78–1.23) 0.87

SEARCH ER−PR−HER2− 182/5,966 1.42 (1.03–1.95) 2.41 (1.47–3.95) 1.51 (1.20–1.89) 4.2 × 10−4 0.058

ER−PR−HER2+ 63/5,966 1.31 (0.79–2.16) 0.27 (0.04–1.95) 0.97 (0.64–1.46) 0.88

Combined ER−PR−HER2− 3,707/19,728f 1.17 (1.06–1.30) 1.69 (1.43–1.99) 1.25 (1.16–1.34) 1.1 × 10−9 0.010

ER−PR−HER2+ 376/18,126 1.15 (0.91–1.46) 1.11 (0.73–1.70) 1.03 (0.88–1.21) 0.71
aNumber of cases and controls with genotype data for rs10069690. All subjects were directly genotyped. bAdjusted for age, study and principal components in AABC. Adjusted for age and  
country in TNBCC. Adjusted for age, study and country (EPIC only) in BPC3. Adjusted for age in SEARCH. Combined results are from the meta-analysis. cP for trend (1-d.f.). dExcludes San Francisco 
Bay Area Breast Cancer Study (SFBCS) and Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), as HER2 data were not available. eExcludes WHS , as HER2 data were not 
available. fIncludes TNBCC. Without TNBCC: 922 ER−PR−HER2− cases and 18,126 controls; OR per allele = 1.33 (1.20–1.48), P = 6.3 × 10−8; heterozygotes: OR = 1.29 (1.09–1.53); 
homozygotes: OR = 1.85 (1.47–2.33).
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OR = 1.32, P = 1.4 × 10−8; triple negative, OR = 1.48, P = 1.9 × 10−9;  
P for interaction with age = 0.035 and 3.2 × 10−3, respectively;  
Supplementary Table 3). We found no significant association with 
rs1006960 among ER- and PR-positive cases when stratified by HER2 
status (513 triple-positive cases and 18,126 controls, OR = 1.09,  
P = 0.21; 2,808 ER-positive, PR-positive, HER2-negative cases  
and 18,126 controls, OR = 1.04, P = 0.29), which suggests the asso-
ciation may be limited to triple-negative disease and not all HER2-
negative tumors.

Similar to 8q24 (refs. 5–7) and 11q13 (refs. 8–10), the TERT-CLPTM1L 
locus harbors multiple risk variants for different cancers (reviewed 
in ref. 11). SNP rs10069690 is modestly correlated (r2 = 0.13–0.43 in 
1000 Genomes Project populations of European and African ancestry, 
Supplementary Fig. 2) with variants found for serous ovarian cancer  
(rs7726159), glioma (rs2736100) and lung cancer (rs2736100, 
rs2735940)12–14. Aside from risk variant rs2853676 found for glioma14, 
which we found to be associated with risk in TNBCC (P = 0.014,  
r2 = 0.05 with rs10069690), none of the known risk variants identi-
fied for other cancers in the TERT-CLPTM1L region was significantly 
associated with breast cancer risk in TNBCC or AABC. Although 
rs7726159 was not tested in AABC or TNBCC (as it is not on the 
Illumina arrays or in HapMap), it is noteworthy that the first common 
risk variant identified for ER-negative breast cancer, at chromosome 
19p13, is also associated with risk for serous ovarian cancer15. The 
TERT gene encodes the catalytic subunit of telomerase, which controls  
telomere length, a process linked with genomic instability and impli-
cated in tumorigenesis. Sequencing of the coding exons of TERT in 96 
African-American women (Online Methods) did not reveal a coding 
variant strongly correlated with rs10069690. The TERT locus may 
highlight another biological process common to the pathogenesis of 
ER-negative breast cancer subtypes and serous ovarian cancer that is 
also shared with other cancers.

Identification of the variant directly responsible for the association 
will be required to fully address the extent to which this locus con-
tributes to the greater incidence of ER-negative and triple-negative 
tumors in women of African ancestry. However, it is notable that the 
risk allele frequency of rs10069690 is greater in African American 
women (frequency, 0.57) than in women of European ancestry (fre-
quency, 0.26). If this variant is an equally good surrogate for the bio-
logically functional allele in each population, then this locus may 
be responsible for a 15% (95% CI, 10–20%) higher incidence rate of 
ER-negative or triple-negative breast cancer in women of African 
compared to European ancestry (Online Methods). Larger studies 
with well-characterized tumor pathology information will be needed 
to determine whether the association we observed applies to all ER-
negative disease or just the triple-negative subtype. Our findings 
provide further support for the presence of genetic susceptibility to 
ER-negative breast cancer subtypes and demonstrate the importance 
of discovery efforts in multiple populations.
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ONLINE	METHOdS
Study populations. Stage 1 included the studies of the AABC and the TNBCC. 
AABC includes 3,153 breast cancer cases (1,017 ER negative and 1,608 ER 
positive) and 2,831 controls from 9 studies (Supplementary Table 1). TNBCC 
is composed of 2,963 triple-negative breast cancer cases and 1,632 controls 
from 22 studies, GWAS genotype data from an additional 85 triple-negative 
breast cancer cases and 222 controls from HEBCS, and public GWAS geno-
type data from 3,448 controls from Cancer Genetic Markers of Susceptibility 
(CGEMS), Wellcome Trust Case-Control Consortium (WTCCC), KORA and 
QIMR (Supplementary Table 1). Replication studies include 8,365 breast 
cancer cases (1,359 ER negative and 5,255 ER positive) and 10,935 controls 
of the BPC3 and 6,182 breast cancer cases (933 ER negative and 3,434 ER 
positive) and 5,966 controls of the SEARCH. All participants in these studies 
have provided written informed consent for the research, and approval for the 
study was obtained from the ethics review boards at all the local institutions.  
A description of each participating study is provided in the Supplementary 
Note. Details regarding the measurement and collection of ER, PR and HER2 
data for each study are provided in Supplementary Table 4.

Genotyping and quality control. Genotyping in AABC was conducted using 
the Illumina Human1M-Duo BeadChip. Of the 5,984 samples in the AABC 
Consortium (3,153 cases and 2,831 controls), we attempted genotyping of 5,932, 
removing samples (n = 52) with DNA concentrations <20 ng/µl. Following gen-
otyping, we removed samples on the basis of the following exclusion criteria: 
(i) unknown replicates (≥98.9% genetically identical, n = 29); (ii) samples with 
call rates <95% after a second attempt (n = 100); (iii) samples with ≤5% African 
ancestry (n = 36) (discussed below); and (iv) samples with <15% mean hetero-
zygosity of SNPs on the X chromosome and/or similar mean allele intensities 
of SNPs on the X and Y chromosomes (n = 6). In the analysis, we removed 
SNPs with <95% call rates (n = 21,732) or minor allele frequencies (MAFs) 
<1% (n = 80,193). The concordance rate for blinded duplicates was 99.95%. 
We also eliminated SNPs with genotyping concordance rates <98% based on 
the replicates (n = 11,701). The final analysis data set included 1,043,036 SNPs 
genotyped on 3,016 cases (988 ER negative, 1,520 ER positive and the remain-
ing 508 cases with unknown ER status) and 2,745 controls, with an average 
SNP call rate of 99.7% and average sample call rate of 99.8%. The call rate for 
rs10069690 was very high in stage 1 (99.9%) and similar in cases (99.9%) and 
controls (99.9%). We also re-genotyped rs10069690 using TaqMan in 1,456 of 
the stage 1 samples; the concordance was 99.8%.

Genotyping for the TNBCC GWAS was conducted on 1,577 cases from ten 
studies (Australian Breast Cancer Tissue Bank (ABCTB), Bavarian Breast Cancer 
Cases and Controls (BBCC), Dana-Farber Cancer Institute, Fox Chase Cancer 
Center, GENICA, MARIE, Melbourne Collaborative Cohort Study (MCBCS), 
Prospective Study of Outcomes in Sporadic Versus Hereditary Breast Cancer 
(POSH), Sheffield Breast Cancer Study (SBCS)) using the Illumina 660-Quad SNP 
array. In addition, a set of MARIE cases (n = 56) were genotyped using the Illumina 
CNV370 SNP array. HEBCS cases (n = 85) were genotyped using the Illumina 
550-Duo SNP array, bringing the total number of cases to 1,718. Population 
allele and genotype frequencies on healthy population controls (n = 222)  
genotyped on Illumina HumanHap 370CNV in the NordicDB, a Nordic pool and 
portal for genome-wide control data, were obtained from the Finnish Genome 
Center. GWAS data for public controls (n = 3,448) were generated using the follow-
ing arrays: Illumina 660-Quad (QIMR), Illumina 550(v1) (CGEMS), Illumina 550 
(KORA) and Illumina 1.2M (WTCCC). The combined total number of controls  
was 3,670. These GWAS data were independently evaluated by an iterative qual-
ity control process with the following exclusion criteria: MAF <0.01, call rate 
<95%, Hardy-Weinberg equilibrium (HWE) P value < 1 × 10−7 among controls 
and sample call rate <98%. In total, we excluded cases failing in the genotyping 
process (n = 5), previously unknown replicates (n = 2) and samples with call rates 
<98% (n = 83), samples that failed sex check (n = 10), cases identified as non– 
triple-negative breast cancer (n = 20) and related samples (n = 27). We removed 
SNPs with <95% call rates or MAF <5%. Because a number of our samples were 
genotyped at different locations, we removed SNPs if there was a difference of 
>0.10 between the study allele frequency and the median frequency across all 
studies. Eigensoft was used to evaluate confounding due to population stratifica-
tion. We removed 101 subjects that did not cluster with the CEU HapMap phase 
2 samples, resulting in 1,562 cases and 3,578 controls in the GWAS analyses.

Re-genotyping of rs10069690 on 2,963 TNBCC cases and 1,632 study-
specific controls was conducted using a single multiplex on the iPLEX Mass 
Array platform (Sequenom). We removed 31 cases from MCCS that were 
part of the MCCS replication sample in BPC3. SNPs and samples evaluated 
on the iPLEX were excluded on the basis of the following criteria: SNP call 
rate was <97%, HWE P value < 0.001 among controls and sample call rate 
<95% (for the overall experiment). The final data set of 2,849 cases and 1,602 
controls for rs10069690 had a SNP call rate >99% and HWE P value of 0.53 
in controls. The concordance rate, on the basis of blinded duplicates, was 
100%. The concordance of the imputed (R2 = 0.55) versus the genotyped 
data was 70%.

Replication genotyping. In BPC3, genotyping of rs10069690 was per-
formed by TaqMan in five laboratories (Cancer Prevention Study II 
Nutrition Cohort (CPS2) and Multiethnic Cohort (MEC) at the University 
of Southern California; the Nurses’ Health Study (NHS) and the Women’s 
Health Study (WHS) at Harvard University; EPIC at the German Cancer 
Research Center in Heidelberg; MCCS at Melbourne University and PLCO 
at the NCI Core Genotyping Facility). Genotyping in SEARCH was per-
formed by TaqMan at Cambridge University. Genotype call rates were >92% 
in cases and controls, and concordance of blinded duplicates was ≥ 99.5% in 
all studies. The P value for HWE in controls was >0.01 in all studies except  
WHS (P = 0.007).

DNA sequencing. Bi-directional sequencing of the 15 coding exons of TERT 
was performed in 96 African-American women using the ABI 3730xl DNA 
Analyzer (Applied Biosystems). Sequencing purification was performed 
using DyeDX 96 columns (Qiagen) following their standard protocol, and  
PolyPhred was used for analyzing sequence traces (http://droog.gs.washington.
edu/polyphred/). More than 95% of samples were sequenced for each exon 
except for exon 15 (n = 74) and 16 (n = 86). Exon 1 could not be sequenced, 
as well as 112bp (9%) of exon 2, because of high GC content.

Statistical analysis. In AABC, we tested for gene dosage effects through a 
one-degree-of-freedom likelihood ratio test in models adjusted for age, study 
and genetic ancestry eigenvectors 1–10. OR and 95% CI were estimated using 
unconditional logistic regression. In TNBCC, unconditional logistic regression 
was used to assess single SNP associations also assuming a log-additive model, 
adjusting for country and the first two principal components. For the analyses 
of the iPLEX genotyping data on rs10069690, unconditional logistic regression 
was used assuming a log-additive model and adjusting for age and country.

In both AABC and TNBCC, phased haplotype data from the founders of the 
CEU and YRI HapMap Phase 2 samples (build 21) were used to infer linkage 
disequilibrium patterns in order to impute untyped markers. For both studies, 
genome-wide imputation was carried out using the software MACH. Filtered 
from the analysis were SNPs with R2 < 0.3.

We conducted a fixed-effect meta-analysis of AABC and TNBCC using the 
inverse variance weighted method. The number of SNPs available for meta-
analysis from AABC and TNBCC was 3,055,415 and 2,134,490 respectively. 
The union of these two data sets (3,154,485 SNPs) was meta-analyzed using 
the program METAL.

SNP rs10069690 was analyzed in BPC3 and SEARCH using logistic regres-
sion controlling for age and study or country (BPC3 only). The meta-analysis 
of rs10069690 from AABC, TNBCC, BPC3 and SEARCH was conducted using 
the inverse variance weighted method. Testing for heterogeneity by study was 
evaluated using the Q statistic. Case-only analyses were performed to test for 
differences in the association by tumor subtypes.

We estimated the relative risk in African-ancestry women compared to 
women of European descent that could plausibly be attributable to the associa-
tion with rs10069690. The calculation of the attributable racial/ethnic ratio 
(ARR) is ARR = i=∑ 0

2  fAORi/
i=∑ 0
2  f EORi, where fA(i) is the probability in 

the African American women of carrying i = 0, 1 or 2 copies of the risk vari-
ant and fE(i) is the same probability for European women. The per-allele OR 
is for triple-negative disease from the meta-analysis (1.25), and both a log 
linear model for risk and Hardy-Weinberg equilibrium for the alleles (in both 
populations) is assumed. A confidence interval for the ARR is calculated from 
the confidence interval for the OR in the meta-analysis.
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Genome-wide association studies (GWAS) have revealed 19 common genetic variants that are associated with
breast cancer risk. Testing of the index signals found through GWAS and fine-mapping of each locus in diverse
populations will be necessary for characterizing the role of these risk regions in contributing to inherited
susceptibility. In this large study of breast cancer in African-American women (3016 cases and 2745 controls),
we tested the 19 known risk variants identified by GWAS and replicated associations (P < 0.05) with only 4
variants. Through fine-mapping, we identified markers in four regions that better capture the association
with breast cancer risk in African Americans as defined by the index signal (2q35, 5q11, 10q26 and 19p13).
We also identified statistically significant associations with markers in four separate regions (8q24, 10q22,
11q13 and 16q12) that are independent of the index signals and may represent putative novel risk variants.
In aggregate, the more informative markers found in the study enhance the association of these risk regions
with breast cancer in African Americans [per allele odds ratio (OR) 5 1.18, P 5 2.8 3 10224 versus OR 5
1.04, P 5 6.1 3 1025]. In this detailed analysis of the known breast cancer risk loci, we have validated and
improved upon markers of risk that better characterize their association with breast cancer in women of
African ancestry.
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INTRODUCTION

Genome-wide association studies (GWAS) of breast cancer
have identified at least 19 chromosomal regions that harbor
common alleles that contribute to genetic susceptibility
(1–10). These discoveries have allowed for improved under-
standing of genetic risk for this common cancer, although it
is argued that many more markers will be needed to elucidate
disease heritability, and in the clinical setting for disease pre-
diction (11–13). Except for the breast cancer risk locus at
6q25 identified in a GWAS of Chinese women, the risk loci
for breast cancer have been revealed in studies in women of
European ancestry. We have recently shown in a multiethnic
study that a summary score comprised of the index variants
at many of these risk loci is statistically significantly asso-
ciated with breast cancer risk in multiple populations [odds
ratio (OR) per allele of .1.10], but not in African Americans
(14). Similar studies in African-American women have also
reported lack of replication with many of the reported index
signals (15–17). Limited statistical power of these initial
reports as well as variation in both allele frequency and pat-
terns of linkage disequilibrium (LD) across populations may
be contributing factors as to why the associations found in
the GWAS populations may not be generalizable to African
Americans. Association testing of the risk variants as well as
fine-mapping in a sufficiently large sample of African Amer-
icans will be needed to identify and localize the subset of
markers that best define risk of the functional allele(s)
within known risk regions.

In the present study, we tested common genetic variation at
the breast cancer risk loci identified in women of European
and Asian descent in a large sample comprised of 3016
African-American breast cancer cases and 2745 controls to
identify markers of risk that are relevant to this population.
More specifically, we examined the index variants and con-
ducted fine-mapping of the locus to both improve the current
set of risk markers in African Americans as well as to identify
new risk variants for breast cancer. We then applied this infor-
mation to model breast cancer risk in African-American
women in an attempt to characterize the spectrum of genetic
risk in this population defined by common variants at the
known risk loci.

RESULTS

The ages of cases and controls ranged from 22 to 87 years and
23 to 86 years, respectively, with cases and controls having
similar mean ages (55 and 58 years, respectively; Supplemen-
tary Material, Table S1).

We tested 19 validated breast cancer risk variants (referred
to as ‘index variants’ throughout the paper) at 1p11, 2q35,
3p24, 5p12, 5q11, 6q25, 8q24, 9p21, 9q31, 10p15, 10q21,
10q22, 10q26, 11p15, 11q13, 14q24, 16q12, 17q23 and
19p13 in models adjusted for age, study, global ancestry (the
first 10 eigenvectors) and local ancestry (Table 1; Supplemen-
tary Material, Table S2) (1–10); 17 SNPs were directly geno-
typed, whereas 2 were imputed (r2. 0.98; see Materials and
Methods). All 19 variants were common (≥0.05) in African
Americans, with 11 variants being more common in
Europeans than in African Americans (Table 1, Fig. 1). In

previous GWAS, the index signals had modest ORs (1.05–
1.29 per copy of the risk allele) and our sample size provided
≥70% statistical power to detect the reported effects for 12 of
the 19 variants (at P , 0.05; Supplementary Material,
Table S2).

We observed positive associations with 11 of the 19 variants
(OR . 1); however, only 4 were statistically significant
(P , 0.05 at 2q35, 9q31, 10q26 and 19p13; Table 1). Of the
15 variants that were not replicated at P , 0.05, statistical
power was ,70% for only 7 of the variants. Although
power was more limited, we also evaluated associations by
estrogen receptor (ER) status as some risk variants have
been found to be more strongly associated with ER-positive
(ER+) or ER-negative (ER2) breast cancer (2,18). We
observed positive associations with 12 variants (2 at
P , 0.05) for ER+ disease (n ¼ 1520) and with 9 variants
for ER2 (3 at P , 0.05; n ¼ 988) (Supplementary Material,
Table S3). For only one variant did we observe statistically
significant risk heterogeneity by ER status (rs13387042 at
2q35, P ¼ 0.013) (Supplementary Material, Table S3).

Local ancestry was included in all models, as it was found
to be associated with breast cancer risk in many regions (Sup-
plementary Material, Table S4). We observed nominally sig-
nificant associations between local ancestry and overall
breast cancer, ER+ or ER2 disease risk at 5 loci (5p12,
6q25, 8q24, 10p15, 10q26). The most statistically significant
association was between European ancestry and ER+ breast
cancer risk at 6q25 (OR per European allele chromosome ¼
1.19, P ¼ 6.2 × 1023). The inverse association observed
between European ancestry and ER+ disease risk at 10q26
(OR per European chromosome ¼ 0.85, P ¼ 0.011) is consist-
ent with previous reports of over-representation of African
ancestry at this locus in many of these same cases (19,20).

Aside from statistical power, the lack of a statistically
significant association with an index variant (OR . 1 and
P , 0.05) suggests that the particular variant revealed in the
GWAS populations may not be adequately correlated with
the biologically relevant allele in African Americans. In an
attempt to identify a better genetic marker of risk in African
Americans, we conducted fine-mapping across all risk
regions, using genotyped SNPs on the Illumina 1M array
and imputed SNPs to Phase 2 HapMap populations (see
Materials and Methods). If a marker associated with risk in
African Americans represents the same signal as that reported
in the initial GWAS, then it should be correlated to some
degree with the index signal in the GWAS population.
Using HapMap data for the populations in which the risk
variant was identified [Utah residents with ancestry from
northern and western Europe (CEU), or Han Chinese in
Beijing, China (CHB)], we catalogued and tested all SNPs
that were correlated (r2≥ 0.2) with the index signal (within
250 kb), applying an aa of 3.2 × 1023 which was estimated
to be 0.05 divided by the average number of tags needed to
capture (r2≥ 0.8) the common risk alleles correlated with
the index allele in each region in the Yoruba HapMap popula-
tion [in Ibadan, Nigeria (YRI); Supplementary Material,
Table S5]. We also tested for novel independent associations,
focusing on SNPs that were uncorrelated with the index signal
in the initial GWAS populations. Here, we applied a Bonfer-
roni correction for defining novel associations as statistically
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Table 1. Associations with common variants at known breast cancer risk regions in African Americans

Chr., nearest genes Index SNP from GWAS (3016 cases, 2745 controls) Best marker in African Americans (3016 cases, 2745 controls)
Marker, position, alleles
(risk/reference)

RAF in CEU/AAa, OR (95% CI),
Ptrend

Marker, position, alleles
(risk/reference)

RAF in CEU/AAa, OR (95% CI),
Ptrend from stepwise analysis

r2 with index in
CEU/YRIb

1p11 rs11249433, 120982136, G/A 0.43/0.13, 1.01 (0.90–1.14), 0.84
2q35 rs13387042, 217614077, A/G 0.56/0.72, 1.12 (1.03–1.21), 7.5 × 1023 rs13000023c, 217632639, G/A 0.82/0.83, 1.20 (1.09–1.33), 5.8 × 1024 0.35/0.53
3p24, NEK10 rs4973768, 27391017, T/C 0.44/0.36, 1.04 (0.96–1.13), 0.32
5p12, MRPS30 rs4415084, 44698272, T/C 0.38/0.63, 1.02 (0.95–1.11), 0.54
5q11, MAP3K1 rs889312, 56067641, C/A 0.30/0.34, 1.07 (0.99–1.18), 0.084 rs16886165, 56058840, G/T 0.16/0.31, 1.15 (1.06–1.25), 6.5 × 1024 0.40/,0.01
6q25, C6orf97 rs2046210c,d, 151990059, A/G 0.38/0.60, 1.00 (0.93–1.09), 0.88
8q24 rs13281615, 128424800, G/A 0.45/0.43, 1.05 (0.97–1.13), 0.20
9p21, CDKN2B rs1011970, 22052134, T/G 0.17/0.33, 1.05 (0.97–1.14), 0.24
9q31 rs865686, 109928199, T/G 0.61/0.52, 1.08 (1.01–1.17), 0.034
10p15, ANKRD16 rs2380205, 5926740, C/T 0.52/0.42, 0.98 (0.91–1.06), 0.60
10q21, ZNF365 rs10995190, 63948688, G/A 0.87/0.83, 0.97 (0.88–1.08), 0.57
10q22, ZMIZ1 rs704010, 80511154, T/C 0.43/0.11, 0.99 (0.87–1.12), 0.83 rs12355688, 80725632, T/C 0.090/0.20, 1.24 (1.13–1.36), 6.8 × 1026 ,0.01/,0.01
10q26, FGFR2 rs2981582, 123342307, A/G 0.46/0.46, 1.11 (1.03–1.19), 8.6 × 1023 rs2981578c, 123330301, C/T 0.46/0.81, 1.24 (1.11–1.39), 1.7 × 1024 0.66/0.059
11p15, LSP1 rs3817198, 1865582, C/T 0.33/0.17, 0.98 (0.88–1.08), 0.63
11q13 rs614367, 69037945, T/C 0.18/0.13, 0.96 (0.86–1.07), 0.45 rs609275c, 69112096, C/T 1.00/0.59, 1.20 (1.11–1.30), 1.0 × 1025 NA/,0.01
14q24, RAD51L1 rs999737, 68104435, T/C 0.26/0.051, 0.98 (0.82–1.17), 0.80
16q12, TNRC9 rs3803662, 51143842, A/G 0.25/0.51, 0.99 (0.92–1.08), 0.85 rs3112572, 51157948, A/G 0.020/0.20, 1.18 (1.08–1.30), 3.9 × 1024 0.038/0.31
17q23, COX11 rs6504950c, 50411470, G/A 0.70/0.66, 1.05 (0.97–1.14), 0.19
19p13, ANKLE1 rs2363956, 17255124, T/G 0.45/0.49, 1.14 (1.05–1.22), 8.0 × 1024 rs3745185, 17245267, G/A 0.52/0.75, 1.20 (1.10–1.32), 3.7 × 1025 0.57/0.19

SNP positions are based on NCBI build 36.
ORs are per allele odds ratios adjusted for age, study, the first 10 eigenvectors and local ancestry at each risk locus.
Ptrend values are based on test of trend (1 d.f.).
aRAF, risk allele frequencies in the original GWAS population (HapMap CEU, or CHB for rs2046210) and AA (African American) controls in this study. Risk allele is the allele associated with increased risk
in previous GWAS.
bPairwise correlations (r2) between the index signal and the best marker are from the CEU (CHB for rs2046210) and YRI populations in the 1000 Genomes Project (March 2010 release).
cImputed SNPs.
dIndex signal reported in Han Chinese. RAFs based on HapMap CHB and r2 based on CHB in the 1000 Genomes Project (March 2010 release).
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significant in each region, with ab estimated to be 0.05 divided
by the total number of tags needed to capture (r2≥ 0.8) all
common risk alleles in the 19 regions in the YRI population
(ab¼ 1.0 × 1025; similar to the genome-wide-type correction
of 5 × 1028, which accounts for the number of tags needed to
capture all common alleles in the genome; Supplementary Ma-
terial, Table S5). For each region, stepwise logistic regression
was used with SNPs kept in the final model based on aa or ab

(results for each model are provided in Supplementary Mater-
ial, Tables S6 and S7). These procedures were applied to all
cases and controls as well as in hypothesis-generating analyses
stratified by ER status.

At nine loci, we detected variants that were statistically sig-
nificantly associated with breast cancer risk in African
Americans. These regions include 9q31, where the sole
marker of risk was the index signal (rs865686: OR ¼ 1.08,
P ¼ 0.034; Table 1). In five of these nine regions, the index
marker itself was not statistically significantly associated
with disease risk. Through fine-mapping, we revealed
markers in four regions that were more significantly associated
with risk than the index signal (.1 order of magnitude change
in the P-value) and are likely to capture the same signal (2q35,
5q11, 10q26 and 19p13). We also identified markers in four
regions that are not correlated with the index signal in the
GWAS populations (8q24, 10q22, 11q13 and 16q12) and
may represent putative novel risk variants, with one being spe-
cific for ER+ disease (8q24) (Table 1, Fig. 2 and Supplemen-
tary Material, Table S8). These regions are discussed in what
follows.

Risk variants that better define the index signal
in African Americans

2q35. The index signal at 2q35 was statistically significantly
associated with risk of overall breast cancer (rs13387042:
OR ¼ 1.12, P ¼ 7.5 × 1023; Table 1) and ER+ disease
(OR ¼ 1.22, P ¼ 2.6 × 1024; Supplementary Material,

Table S3). However, we found stronger associations with
two markers that are each modestly correlated with the
index signal in CEU and YRI: rs13000023 with overall
breast cancer (OR ¼ 1.20, P ¼ 5.8 × 1024) and rs12998806
with ER+ disease (OR ¼ 1.39, P ¼ 3.3 × 1026) (Table 1
and Supplementary Material, Table S8). As shown in Supple-
mentary Material, Figure S1, the signal in this region appeared
limited to ER+ breast cancer, which is consistent with the
initial report of this risk locus (2) but not with subsequent
large-scale replication efforts in European populations (21).

5q11. We found a positive non-significant association with the
index signal at 5q11, which is located 79 kb centromeric of the
MAP3K1 gene (rs889312: OR ¼ 1.07, P ¼ 0.084; Table 1).
Fine-mapping revealed statistically significant associations
with markers, rs16886165 for overall breast cancer (OR ¼
1.15, P ¼ 6.5 × 1024) and rs832529 for ER2 disease
(OR ¼ 1.22, P ¼ 1.3 × 1023; Table 1 and Supplementary Ma-
terial, Table S8). These SNPs show greater correlation with
the index signal in Europeans (CEU, r2¼ 0.40 and 0.46)
than in Africans (YRI, r2, 0.01 and r2¼ 0.09), which
suggests that they may be better markers of the biologically
functional variant in African Americans (Table 1, Fig. 2).

10q26. Both the index signal, rs2981582 (OR ¼ 1.11,
P ¼ 8.6 × 1023; Table 1) and rs2981578, which was identified
previously through fine-mapping in African Americans (which
some of these studies contributed to) (22), were statistically
significantly associated with risk (OR ¼ 1.24, P ¼ 1.7 ×
1024, Table 1). Variant rs2981578 was the most strongly asso-
ciated marker in the region for overall breast cancer and for
ER+ disease, which is consistent with previous reports of
variation in this region being more strongly associated with
ER+ breast cancer (Supplementary Material, Table S8) (18).
In fine-mapping the locus, we observed a suggestive associ-
ation with a correlated marker and ER2 disease (rs2912774:
OR ¼ 1.19, P ¼ 2.1 × 1023; Supplementary Material, Table

Figure 1. RAFs in Europeans and African Americans. The distribution of RAFs for the 19 index SNPs (from Table 1) in HapMap CEU (CHB for rs2046210)
and African Americans (AA). The variants are sorted based on the RAF in the GWAS population.
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Figure 2. –Log P plots for common alleles at eight breast cancer risk loci in African Americans. –Log P-values for risk-associated alleles in African Americans
from logistic regression models adjusted for age, study, global ancestry (the first 10 eigenvectors) and local ancestry. P-values are for overall breast cancer risk
except for 8q24, which is for ER+ breast cancer. Pairwise correlations (r2) in the HapMap CEU population are shown in relation to markers identified through
fine-mapping in African Americans (diamond), except for 11q13, where r2 is shown in HapMap YRI as the marker is monomorphic in CEU. Squares denote
genotyped SNPs; circles, imputed SNPs. Gray squares and circles denote that r2 cannot be estimated (not in HapMap or monomorphic in CEU). Red
arrows denote markers identified in African Americans; yellow arrows, GWAS index variants. Each panel shows a –log P plot for common alleles for
regions: (A) 2q35; (B) 5q11; (C) 8q24; (D) 10q22; (E)10q26; (F) 11q13; (G) 16q12; (H) 19p13. The plots were generated using LocusZoom (55).
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S8); however, the association was also noted with ER+
disease (OR ¼ 1.10, P ¼ 0.041; Supplementary Material,
Table S9) and is likely to capture the same signal as
rs2981578.

19p13. 19p13 was the first risk locus reported to harbor a
variant that may be specific for ER2 disease (9). In African
Americans, the index variant was statistically significantly
associated with risk of overall breast cancer (rs2363956:
OR ¼ 1.14, P ¼ 8.0 × 1024), as well as ER+ (OR ¼ 1.12,
P ¼ 0.016) and ER2 disease (OR ¼ 1.14, P ¼ 0.018;
Table 1 and Supplementary Material, Table S3). The most sig-
nificant association in the region for overall breast cancer
and ER+ disease was with rs3745185 (P ¼ 3.7 × 1025 and
P ¼ 8.2 × 1024, respectively), which is likely to capture the
same functional variant (r2¼ 0.57 in CEU and 0.19 in YRI;
Table 1 and Supplementary Material, Table S8). The most sig-
nificant marker for ER2 breast cancer was correlated with
both rs2363956 and rs3745185 (rs11668840: OR ¼ 1.25,
P ¼ 5.1 × 1025; Supplementary Material, Tables S8 and S10).

Novel risk-associated markers at breast cancer
susceptibility loci

8q24. Given the importance of the 8q24 locus in cancer, we
conducted association testing across the entire cancer risk
region (126.0–130.0 Mb) (23–25). The index signal
(rs13281615) was not statistically significantly associated
with risk in African Americans (Table 1 and Supplementary
Material, Table S3), nor did we identify significant associa-
tions with correlated SNPs. However, we did detect a signifi-
cant association with rs16902056 and ER+ breast cancer [risk
allele frequency (RAF) 0.95; P ¼ 6.7 × 1026; ER2: P ¼
0.66; Supplementary Material, Table S8]. This SNP is
located 78 kb centromeric of the index variant and is not cor-
related with the index variant (r2, 0.01 in CEU and r2¼
0.027 in YRI). No statistically significant associations were
observed with variants found previously in association with
cancers of the bladder and ovary, or leukemia (rs9642880:
OR ¼ 1.03, P ¼ 0.58; rs10088218: OR ¼ 1.02, P ¼ 0.62;
rs2456449: OR ¼ 1.07, P ¼ 0.14) (26–28). Of the known
risk variants for prostate cancer (29–35), we found a single
nominally significant (P , 0.05) association with the same
risk allele of rs1016343 (P ¼ 0.015) which is located
.260 kb centromeric of the breast cancer risk region and is
not correlated with rs13281615 or rs16902056.

10q22. We observed no association with the index signal at
10q22 (rs704010) which is located in intron 1 of the gene
ZMIZ1, or with any correlated markers. However, we did
detect strong evidence of a second signal located 215 kb telo-
meric in intron 12 of the gene ZMIZ1 (rs12355688: OR ¼
1.24, P ¼ 6.8 × 1026). As is shown in Table 1 and Figure 2,
this putative novel risk variant is not correlated with the
index variant in the CEU or YRI populations (r2, 0.01).

11q13. No positive association was noted with the index
variant at 11q13. However, we did detect evidence of a
second independent signal (rs609275: OR ¼ 1.20, P ¼ 1.0 ×
1025), located 74 kb telomeric, and 53 kb centromeric of

CCND1. The variant is monomorphic and uncorrelated with
the index signal in the CEU population; and r2 with the
index signal in the YRI population is ,0.01 (Table 1).

16q12. As in previous studies of African Americans, we were
not able to replicate the association signal defined by the index
variant rs3803662 (Table 1) (15,16). A recent study of African
Americans reported a suggestive association with SNP
rs3104746, which is located 15 kb telomeric of rs3803662
(16). This SNP has a minor allele frequency (MAF) of 0.04
in the HapMap CEU population, 0.19 in our African-American
controls, and is modestly correlated with rs3803662 in
Africans (r2¼ 0.31 in YRI), but not in Europeans (r2¼
0.038; Supplementary Material, Table S10). Fine-mapping
around this putative signal revealed a perfect proxy (r2¼ 1)
for rs3104746, rs3112572, which is significantly associated
with breast cancer risk in African Americans (OR ¼ 1.18,
P ¼ 3.9 × 1024), with the association noted to be stronger
for ER+ breast cancer (OR ¼ 1.27, P ¼ 3.1 × 1025;
Table 1 and Supplementary Material, Table S8).

For index SNPs found to be nominally associated with
breast cancer risk, as well as risk-associated markers identified
through fine-mapping, we also tested for associations by geno-
type. Results from the genotype-specific model were consist-
ent with log-additive associations (Supplementary Material,
Tables S9 and S11). Risk variants at 2q35 and 8q24 were
also found to have significantly stronger associations with
ER+ breast cancer than ER2 disease (Supplementary Mater-
ial, Table S7), which is consistent with previous studies (2,18).

We observed no statistically significant associations with
common variation at 10 risk loci on 1p11, 3p24, 5p12, 6q25,
9p21, 10p15, 10q21, 11p15, 14q24 and 17q23 (Supplementary
Material, Fig. S2). We also could not replicate the association
with the recently identified SNP rs9397435 at 6q25 that was
found through fine-mapping in European, African and Asian
population samples (17) (P ¼ 0.26 for overall breast cancer,
P ¼ 0.71 for ER+ and P ¼ 0.36 for ER2 tumor subtypes).
Neither could we replicate the association with SNP
rs4784227 at 16q12, which was identified by a recent multi-
stage GWAS in women of Asian ancestry (36) in our
African-American sample (P ¼ 0.51 overall, P ¼ 0.35 and
P ¼ 0.65 for ER+ and ER2 subtypes, respectively).

Risk modeling

We next estimated the cumulative effect of all breast cancer
risk variants, and compared a summary risk score comprised
of unweighted counts of all GWAS-reported risk variants
with a risk score that included variants we identified as
being associated with risk in African Americans (Table 2).
Using the 19 index signals from GWAS (see Materials and
Methods), the risk per allele was 1.04 [95% confidence inter-
val (CI) 1.02–1.06; P ¼ 6.1 × 1025], and individuals in the
top quintile of the risk allele distribution were at 1.4-fold
greater risk (P ¼ 7.4 × 1025) of breast cancer compared
with those in the lowest quintile (Table 2). As expected, the
risk score was improved when utilizing the markers that we
identified at the known risk loci as being more relevant to
African Americans (eight markers for overall breast cancer:
2q35, 5q11, 9q31, 10q22, 10q26, 11q13, 16q12 and 19p13;
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OR ¼ 1.18; 95% CI 1.14–1.22; P ¼ 2.8 × 10224), with risk
for those in the top quartile being 2.2 times that observed in
the lowest quintile (P ¼ 3.6 × 10217). This score was signifi-
cantly associated with risk of both ER+ (OR ¼ 1.20, P ¼
1.7 × 10219) and ER2 (OR ¼ 1.15, P ¼ 2.8 × 1029)
disease (Phet¼ 0.12) (Supplementary Material, Table S12).

Stratifying by first-degree family history of breast cancer
differentiated risk further with those with a family history
and in the top quintile of the risk score distribution (4% of
the population) having a 3.4-fold greater risk (P ¼ 9.9 ×
10214) compared with those without a family history and in
the lowest quintile of the risk score (Table 2).

In hypothesis-generating analyses, we also developed risk
scores for ER+ and ER2 breast tumor subtypes, utilizing the
most informative markers revealed through fine-mapping of
each phenotype. These phenotype-specific scores were highly
significant (ER+: OR ¼ 1.30, P ¼ 6.0 × 10218; ER2: OR ¼
1.20, P¼ 2.3 × 10210) with statistically significant heterogen-
eity noted when the scores were applied to the other subtype
(Phet¼ 1.7 × 1025 and 5.0 × 1023 for ER+ and ER2 scores,
respectively) (Supplementary Material, Table S12).

DISCUSSION

In this large study of breast cancer in African-American
women, we were able to replicate associations with 4 of the

19 index variants (at P , 0.05). Through fine-mapping, we
observed that overall breast cancer risk was statistically sig-
nificantly associated with markers in four regions which are
likely to capture the GWAS-reported signal and to serve as
better markers of the functional allele and risk in African
Americans. We also detected putative novel associations that
are independent of the index signals in three regions for
overall breast cancer (10q22, 11q13 and 16q12) and in one
region for ER+ disease (8q24). In 10 of the risk regions,
however, we were not able to replicate the GWAS index
signals, nor did we detect statistically significant associations
of common SNPs with breast cancer risk at the levels of statis-
tical significance we set for fine-mapping. The inability to repli-
cate associations with the index signals despite adequate
statistical power (.70% power for 12 of 19 variants) suggests
that they are unlikely to be functional variants or capture the
functional variants as efficiently in this population. Our ability
to find associated markers in five regions where index signals
were not significantly associated with risk also demonstrates
the value of testing common variation at GWAS-identified
risk loci in additional populations (14,16,17,22,37,38).

In four regions, we observed risk markers that are correlated
with, and in the same LD block as the index markers in CEU
(rs13000023 at 2q35, rs16886165 at 5q11, rs2981578 at 10q26
and rs3745185 at 19p13). It is likely that these risk markers
capture the same signal as defined by the index markers

Table 2. The association of the total risk score with breast cancer risk in African Americans

Index markers from
GWAS (19 markers)

Risk-associated best markers in African Americansa

(8 markers)

Mean number of risk alleles in controls (range) 15.7 (6–25) 8.4 (3–14)
Per allele OR (95% CI) 1.04 (1.02–1.06) 1.18 (1.14–1.22)
Ptrend 6.1 × 1025 2.8 × 10224

First-degree family
history negativeb

First-degree family
history positiveb

Subjects, n cases/n controls 3016/2745 3016/2745 2387/2349 554/303
Risk quintilesc

Q1
n cases/n controls 536/549 352/462 281/387 62/57
OR (95%CI) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.58 (1.06–2.37)
P-value — — — 0.025

Q2
n cases/n controls 722/742 430/505 344/437 77/47
OR (95% CI) 0.99 (0.84–1.16) 1.17 (0.96–1.42) 1.15 (0.93–1.43) 2.18 (1.46–3.26)
P-value 0.88 0.11 0.18 1.5 × 1024

Q3
n cases/n controls 435/382 632/625 503/549 115/53
OR (95%CI) 1.15 (0.96–1.39) 1.37 (1.14–1.64) 1.31 (1.07–1.60) 3.14 (2.17–4.53)
P-value 0.14 7.2 × 1024 8.0 × 1023 1.2 × 1029

Q4
n cases/n controls 753/669 665/566 517/476 132/75
OR (95%CI) 1.16 (0.98–1.36) 1.56 (1.30–1.87) 1.51 (1.24–1.86) 2.52 (1.81–3.52)
P-value 0.080 2.3 × 1026 6.2 × 1025 4.0 × 1028

Q5
n cases/n controls 570/403 937/587 742/500 168/71
OR (95%CI) 1.44 (1.20–1.72) 2.16 (1.80–2.58) 2.11 (1.73–2.56) 3.44 (2.47–4.77)
P-value 7.4 × 1025 3.6 × 10217 1.3 × 10213 9.9 × 10214

ORs are adjusted for age, study and the first 10 eigenvectors.
Ptrend values are based on test of trend (1 d.f.).
aThe most significant markers from the stepwise analysis for overall breast cancer in each region from Table 1.
bInformation about first-degree family history of breast cancer is available on 97.5% of cases and 96.6% of controls.
cBased on distribution in controls (cut points for index markers aggregate: 13.3, 15, 16, 18; cut points for best markers aggregate: 7, 8, 9, 10).
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based on the r2 values between these markers and the index
markers (≥0.35). We cannot rule out the possibility, though,
that some of them may represent a second, independent
signal in the same region.

In the four regions where we observed independent signals,
the risk alleles (rs16902056 at 8q24, rs12355688 at 10q22,
rs609275 at 11q13 and rs3112572 at 16q12) were uncorrelated
with, and not in, the same LD block as the index variant in
Europeans (CEU, r2, 0.04)) (distances from the index
signal ranged from 14 kb at 16q12 to 215 kb at 10q22) (Sup-
plementary Material, Fig. S3). Therefore, these variants are
likely to pick up a novel signal independent of the index
signal. However, because of different LD patterns in European
and African ancestry populations, they may each mark the
same functional variant, and if the functional variant is less
common it may not be well captured by either common
marker alone. At 10q22, both the index SNP and the novel
variant are located within introns of the ZMIZ1 gene. ZMIZ1
encodes zinc finger MIZ-type containing 1, which regulates
the activity of various transcription factors (39–41). At
11q13, rs609275 lies 74 kb telomeric of the index signal and
in closer proximity to a number of candidate genes, including
CCND1 (encoding cyclin D1, a protein crucial for cell-cycle
control), ORAOV1 (encoding oral cancer overexpressed 1)
and FGF19 (encoding fibroblast growth factor 19). The asso-
ciation at 16q12 confirms the findings of a previous, smaller
study of African Americans (16), and is consistent with a pre-
vious fine-mapping study suggesting that African Americans
may harbor a separate causal variant in this region (42).
Whether this variant is influencing the same genes/pathways
as the index variant rs3803662 is not known; however, the
stronger associations noted for both variants with ER+
disease (2,18) suggest that they may affect the same biological
process.

Notably, at region 19p13, which was originally reported in
association with ER2 breast cancer (9), the index signal was
statistically significantly associated with both ER+ and
ER2 subtypes in African Americans. In addition, we
found a stronger marker in this region (rs3745185) for
ER+ as well as overall breast cancer risk (Table 1 and Sup-
plementary Material, Table S8). We also found stronger
associations with ER+ than ER2 disease for variants in
many regions, including 2q35, 8q24, 10q26 and 16q12,
which is consistent with previous reports (2,18). In the
study, we also found strong signals for ER2 disease in
regions 5q11, 10q26 and 19p13. It is possible that these
signals may explain some of the excess risk for ER2
disease in African Americans, since these risk alleles have
higher frequencies in this population than they do in
European-ancestry populations. However, our understanding
of their contribution to racial and ethnic differences in
disease incidence will only be determined once the functional
variants have been identified and tested across populations.
Unfortunately, we were not able to assess associations with
triple-negative (ER/PR/HER2-negative; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2)
breast cancer, since HER2 status was available for only a
limited number of cases. However, in a large study of
women of European ancestry which tested many of these
same index variants, further stratification on tumor subtype

using HER2 status was not additionally informative for
ER/PR-negative breast cancer (43).

The observation of secondary signals at many loci, and
associations of variants with different tumor subtypes that
have not yet been reported in European-ancestry populations
could indicate a different genetic architecture of breast
cancer across populations. For example, the index signal at
TNRC9 does not replicate in African Americans, but there
appears to be a second risk variant that is unique to this popu-
lation. At FGFR2, which was originally reported to be asso-
ciated with ER+ disease in women of European ancestry,
we found a signal for ER2 disease with a marker correlated
with the index variant. Similarly, for chromosome 19p13,
which was reported as an ER2 locus, we observed an associ-
ation with ER+ breast cancer. However, these findings and
their implications require further validation.

We investigated local ancestry as a potential confounding
factor in the analysis of each risk locus. At five loci, we
observed nominally significant evidence of association
between local ancestry and breast cancer risk, with the most
statistically significant association observed at 6q25 between
European ancestry and ER+ breast cancer risk. Although
the association of local ancestry and breast cancer risk needs
to be validated in additional large studies, the inability to iden-
tify a risk variant that is differentiated in frequency between
populations of European and African ancestry implies that
either the association with local ancestry at many regions is
a false-positive signal and/or we have not tested an adequate
surrogate of the functional alleles.

The majority of the variants identified by GWAS for
common cancers are of low risk (relative risks ,1.30) and
in aggregate are not yet informative for risk prediction
(11–13). Until the functional alleles at each susceptibility
locus are identified and their effects are accurately estimated,
modeling of the genetic risk will rely on markers that best
capture risk for a given population. Many of the markers we
identified at these risk loci appear to have stronger associations
with breast cancer risk compared with the GWAS-identified
variants in African-American women. The risk score for
overall breast cancer was also equally efficient for ER+ and
ER2 tumors. However, our hypothesis-generating model
suggests that identification of tumor subtype-specific variants
will improve the fit of these models.

While this is the largest study of African Americans to date
to investigate genetic risk at known breast cancer susceptibil-
ity loci, statistical power was still limited. We had only 35%
power to detect an OR of 1.10 for a risk allele of 0.10 fre-
quency which may account for our inability to replicate
GWAS signals or risk-associated markers in 10 of the
regions. While attempting to apply a strict threshold for
declaring significance through fine-mapping, we did not take
into account testing for multiple phenotypes (overall breast
as well as ER+ and ER2 disease). As a result, the a-levels
used as selection criteria may be too liberal. However, our
risk modeling focused on the variants revealed for overall
breast cancer, whereas we consider the associations observed
for markers identified for ER+ or ER2 disease and used in
the subtype-specific risk modeling as hypothesis-generating.
Since all of the cases and controls used for fine-
mapping/discovery were also included in the risk modeling,
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the risk model is likely to over-estimate the level of associ-
ation due to winner’s curse. Instead of partitioning the
sample into test and validation sets, we felt it was necessary
to use all of the subjects in the association testing of known
variants and in fine-mapping to increase the statistical power
to detect associations in each region. Therefore, other
studies with reasonable power in African Americans must be
performed in the future to test the model presented.

In summary, through fine-mapping of the breast cancer sus-
ceptibility regions in a large sample of African-American
women, we identified markers with enhanced association
with breast cancer in this population. Validation and augmen-
tation of this model are needed before risk modeling based on
genetic variants of low risk can be implemented in the clinical
setting.

MATERIALS AND METHODS

Ethics statement

The Institutional Review Board at the University of Southern
California approved the study protocol.

Study populations

This study included 9 epidemiological studies of breast cancer
among African-American women, which comprise a total of
3153 cases and 2831 controls. Sample size and selected char-
acteristics for these studies are summarized in Supplementary
Material, Table S1. What follows is a brief description of these
studies.

The Multiethnic Cohort Study (MEC). The MEC is a prospect-
ive cohort study of 215 000 men and women in Hawaii and
Los Angeles (44) between the ages of 45 and 75 years at base-
line (1993–1996). Through 31 December 2007, a nested
breast cancer case–control study in the MEC included
556 African-American cases (544 invasive and 12 in situ)
and 1003 African-American controls. An additional 178
African-American breast cancer cases (ages: 50–84) diag-
nosed between 1 June 2006 and 31 December 2007 in
Los Angeles County (but outside of the MEC) were included
in the study.

The Los Angeles component of The Women’s Contraceptive
and Reproductive Experiences (CARE) Study. The CARE
Study is a large multi-center, population-based case–control
study that was designed to examine the effects of oral contra-
ceptive use on invasive breast cancer risk among
African-American women and white women aged 35–64
years in five US locations (45). Cases in Los Angeles
County were diagnosed from 1 July 1994 through 30 April
1998, and controls were sampled by random-digit dialing
(RDD) from the same population and time period; 380
African-American cases and 224 African-American controls
were included in the study.

The Women’s Circle of Health Study (WCHS). The WCHS is
an ongoing case–control study of breast cancer among
European women and African-American women in the

New York City boroughs and in seven counties in New
Jersey (46). Eligible cases included women with invasive
breast cancer between 20 and 74 years of age; controls were
identified through RDD. The WCHS contributed 272 invasive
African-American cases and 240 African-American controls.

The San Francisco Bay Area Breast Cancer Study (SFBCS).
The SFBCS is a population-based case–control study of inva-
sive breast cancer in Hispanic, African-American and non-
Hispanic white women conducted between 1995 and 2003 in
the San Francisco Bay Area (47). African-American cases,
aged 35–79 years, were diagnosed between 1 April 1995
and 30 April 1999, with controls identified through RDD.
Included from this study were 172 invasive African-American
cases and 231 African-American controls.

The Northern California Breast Cancer Family Registry
(NC-BCFR). The NC-BCFR is a population-based family
study conducted in the Greater San Francisco Bay Area, and
one of six sites of the Breast Cancer Family Registry
(BCFR) (48). African-American breast cancer cases in
NC-BCFR were diagnosed after 1 January 1995 and
between the ages of 18 and 64 years; population controls
were identified through RDD. Genotyping was conducted
for 440 invasive African-American cases and 53
African-American controls.

The Carolina Breast Cancer Study (CBCS). The CBCS is a
population-based case–control study conducted between
1993 and 2001 in 24 counties of central and eastern North
Carolina (49). Cases were identified by rapid case ascertain-
ment system in cooperation with the North Carolina Central
Cancer Registry, and controls were selected from the North
Carolina Division of Motor Vehicle and United States
Health Care Financing Administration beneficiary lists. Parti-
cipants’ ages ranged from 20 to 74 years. DNA samples were
provided from 656 African-American cases with invasive
breast cancer and 608 African-American controls.

The Prostate, Lung, Colorectal, and Ovarian Cancer Screen-
ing Trial (PLCO) Cohort. PLCO, coordinated by the US
National Cancer Institute (NCI) in 10 US centers, enrolled
approximately 155 000 men and women aged 55–74 years
during 1993–2001 in a randomized, two-arm trial to evaluate
the efficacy of screening for these four cancers (50). A total of
64 African-American invasive breast cancer cases and 133
African-American controls contributed to this study.

The Nashville Breast Health Study (NBHS). The NBHS is a
population-based case–control study of incident breast
cancer conducted in Tennessee (15). The study was initiated
in 2001 to recruit patients with invasive breast cancer or
ductal carcinoma in situ, and controls, recruited through
RDD between the ages of 25 and 75 years. NBHS contributed
310 African-American cases (57 in situ) and 186
African-American controls.

Wake Forest University Breast Cancer Study (WFBC).
African-American breast cancer cases and controls in WFBC
were recruited at Wake Forest University Health Sciences
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from November 1998 through December 2008 (51). Controls
were recruited from the patient population receiving routine
mammography at the Breast Screening and Diagnostic
Center. Age range of participants was 30–86 years. WFBC
contributed 125 cases (116 invasive and 9 in situ) and 153
controls to the analysis.

Genotyping and quality control

Genotyping in stage 1 was conducted using the Illumina
Human1M-Duo BeadChip. Of the 5984 samples from these
studies (3153 cases and 2831 controls), we attempted genotyp-
ing of 5932, removing samples (n ¼ 52) with DNA concentra-
tions ,20 ng/ml. Following genotyping, we removed samples
based on the following exclusion criteria: (i) unknown repli-
cates (≥98.9% genetically identical) that we were able to
confirm (only one of each duplicate was removed, n ¼ 15);
(ii) unknown replicates that we were not able to confirm
through discussions with study investigators (pair or triplicate
removed, n ¼ 14); (iii) samples with call rates ,95% after a
second attempt (n ¼ 100); (iv) samples with ≤5% African
ancestry (n ¼ 36) (discussed in what follows); and (v)
samples with ,15% mean heterozygosity of SNPs on the X
chromosome and/or similar mean allele intensities of SNPs
on the X and Y chromosomes (n ¼ 6) (these are likely to be
males).

In the analysis, we removed SNPs with ,95% call rates
(n ¼ 21 732) or MAFs ,1% (n ¼ 80 193). To assess genotyp-
ing reproducibility, we included 138 replicate samples; the
average concordance rate was 99.95% (.99.93% for all
pairs). We also eliminated SNPs with genotyping concordance
rates ,98% based on the replicates (n ¼ 11 701). The final
analysis data set included 1 043 036 SNPs genotyped on
3016 cases (1520 ER+, 988 ER2 and the remaining 508
cases with unknown ER status) and 2745 controls, with an
average SNP call rate of 99.7% and average sample call rate
of 99.8%.

Statistical analysis

Ancestry estimation. We used principal components analysis
(52) to estimate global ancestry among the 5761 individuals,
using 2546 ancestry informative markers. Eigenvector 1 was
highly correlated (r ¼ 0.997, P , 1 × 10216) with percentage
of European ancestry, estimated in HAPMIX (53), and
accounted for 10.1% of the variation between subjects; subse-
quent eigenvectors accounted for no more than 0.5%. At each
locus and for each participant, we also estimated local ancestry
[i.e. the number of European chromosomes (continuous
between 0 and 2) carried by the participant], using the
HAPMIX program (53). To summarize local ancestry at
each region, for each individual we averaged across all local
ancestry estimates that were within the start and end points
of the region (Supplementary Material, Table S5). To
address the potential for confounding by genetic ancestry,
we adjusted for both global and local ancestry in all analyses.

SNP imputation. In order to generate a data set suitable for
fine-mapping, we carried out genome-wide imputation using
the software MACH (54). Phased haplotype data from the

founders of the CEU and YRI HapMap Phase 2 samples
were used to infer LD patterns in order to impute ungenotyped
markers. The r2 metric, defined as the observed variance
divided by the expected variance, provides a measure of the
quality of the imputation at any SNP, and was used as a thresh-
old in determining which SNPs to filter from analysis
(r2, 0.3). Of the 1 539 328 common SNPs (MAF ≥ 0.05) in
the YRI population in HapMap Phase 2, we could impute
1 392 294 (90%) with r2≥ 0.8. For all the imputed SNPs
presented in Results and the tables reported herein, the
average r2 was 0.92 (estimated in MACH).

Association testing. For each typed and imputed SNP, ORs
and 95% CIs were estimated using unconditional logistic
regression adjusting for age at diagnosis (or age at the
reference date for controls), study, the first 10 eigenvalues
and local ancestry. For each SNP, we tested for allele
dosage effects through a 1 d.f. Wald x2 trend test.

We fine-mapped each risk locus using the combined
genotyped and imputed SNPs in search of (i) an SNP that is
more associated with risk in African Americans than the
index signal; and (ii) a novel signal that is independent of
the index signal. As some risk loci have been found to be
more strongly associated with breast cancer subtypes, we
investigated three outcomes: (i) overall breast cancer, (ii)
ER+ breast cancer, and (iii) ER2 breast cancer, with the
latter two being hypothesis-generating. These analyses
included SNPs (genotyped and imputed) spanning 250 kb
upstream and 250 kb downstream of each index signal. If
the index signal was contained within an LD block (based
on the D′ statistic) of .250 kb, then the region was extended
to include the entire region of LD.

Stepwise regression was performed by region to select the
most informative risk variants as discussed in what follows,
in models adjusted for age, study, global ancestry (the first
10 eigenvectors) and local ancestry. In the stepwise regression,
we preserved the original sample size by using the mean geno-
type of typed subjects in place of ‘no-calls’ for SNPs with
,100% genotyping completion rate.

Within each known risk locus, it is expected that markers
that are associated with risk in African Americans will be cor-
related with the index signal reported in Europeans. Thus, we
identified and tested SNPs that are correlated (r2. 0.2) with
the index signals in the GWAS populations (HapMap CEU
or CHB for 6q25). For each region, we determined the
number of tags needed to capture all the SNPs correlated
with the index signal in the YRI population (Phase 2
HapMap). The average number of tags in each region was
then used as the correction factor for Bonferroni correction.
An a-level of 0.05 divided by average number of tags
needed in each region was applied in the stepwise regression
process. For all of the remaining markers that were not corre-
lated with the index signal (in Europeans), we applied a more
stringent a-level for defining statistical significance. In each
risk region, we determined the number of tag SNPs needed
to capture all common alleles (MAF . 0.05, with r2. 0.8)
in the YRI HapMap population. The total number of tags
across the 19 regions was then used as a correction factor,
as they define the number of independent tests in each
region. An a of 0.05 divided by the number of tags was
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applied to assess statistical significance for any putative novel,
independent signal in each region. For correlated SNPs that
were selected to be better markers, we also assessed phase
to ensure that the new risk allele is on the same haplotype
as the GWAS-reported risk allele in the HapMap CEU
population.

Risk modeling. We modeled the cumulative genetic risk of
breast cancer using the risk variants reported in previous
GWAS (total ¼ 19). We compared the results with a model
of the SNPs found to be significantly associated with risk in
African Americans, which included SNPs identified from the
stepwise procedures at all loci for overall breast cancer risk
(presented in Table 1). More specifically, in each case we
summed the number of risk alleles for each individual and
estimated the OR per allele for this aggregate-unweighted
allele count variable as an approximate risk score appropriate
for unlinked variants with independent effects of approximate-
ly the same magnitude for each allele. We then applied this
risk score to overall breast cancer as well as ER+/
ER2 breast cancer subtypes. We also constructed risk
scores based on risk alleles for ER+ and ER2 tumor subtypes
separately, and, as hypothesis-generating, applied both risk
scores to overall and ER+/ER2 breast cancer subtypes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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ABSTRACT   

Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have 

revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify 

additional genetic variants for ER-negative breast cancer we conducted the largest meta-analysis of ER-

negative disease to date, comprising 4,754 ER-negative cases and 31,663 controls from three GWAS: 

NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2,188 ER-negative cases; 25,519 controls of 

European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1,562 triple negative cases; 

3,399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1,004 

ER-negative cases; 2,745 controls).  We performed in silico replication of 86 SNPs at P ≤1x10-5 in an 

additional 11,209 breast cancer cases (946 with ER-negative disease) and 16,057 controls of Japanese, 

Latino and European ancestry.  We identified two novel loci for breast cancer at 20q11 and 6q14.  SNP 

rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two stage OR=1.16;       

P= 1.1x10-8) but showed a weaker association with overall breast cancer (OR=1.08, P=1.3x10-6) based on 

17,869 cases and 43,745 controls  and no association with ER-positive disease (OR=1.01, P=0.67) based 

on 9,965 cases and 22,902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer 

(OR=1.12; P= 1.1x10-9), and with both ER-positive (OR=1.09; P=1.5x10-5) and ER-negative (OR=1.16, 

P=2.5x10-7) disease. We also confirmed three known loci associated with ER-negative (19p13) and both 

ER-negative and ER-positive breast cancer (6q25 and 12p11).  Our results highlight the value of large-

scale collaborative studies to identify novel breast cancer risk loci.   
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INTRODUCTION 

Breast cancer is a heterogeneous disease and has multiple histological and molecular subtypes, likely with 

distinct etiologies. Tumors that lack expression of the estrogen receptor (ER) tend to have more 

aggressive disease, higher histological grade, and lower survival  rates (1).  ER-negative breast cancer is 

more common in women of African ancestry, accounting for as much as 40% of cases in African 

American women compared with 15-20% in women of European ancestry. The etiologic heterogeneity 

between breast cancer subtypes is supported by different associations with ER-positive versus ER-

negative disease for many of the known breast cancer risk factors (such as reproductive factors and 

BMI)(2).  Tumors in women with BRCA1 mutations are predominantly ER-negative, while tumors in 

BRCA2 mutation carriers are predominantly ER-positive(3).  Furthermore,  genome-wide association 

studies have identified multiple common genetic variants more strongly associated with ER-positive than 

ER-negative breast cancer(4).  Through collaborative efforts, we recently identified risk loci on 5p15 and 

19p13 that are associated specifically with ER-negative and triple negative (TN) (ER-negative, 

progresterone (PR)-negative and HER2-negative) breast cancer(5-7). 

In order to identify genetic loci associated with risk of ER-negative breast cancer, we conducted a 

meta-analysis of three GWAS of ER-negative breast cancer, comprising 4,754 cases and 31,663 controls 

with further replication in an additional 11,209 cases (946 with ER-negative disease) and 16,057 controls.   

 

RESULTS 

The meta-analysis included GWAS of ER-negative breast cancer (4,754 ER-negative cases and 31,663 

controls) from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2,188 ER-negative cases 

and 25,519 controls of European ancestry), the Triple Negative Breast Cancer Consortium (TNBCC) 

(1,562 triple negative cases and 3,399 controls of European ancestry) and the African American Breast 

Cancer Consortium (AABC) (1,004 ER-negative cases and 2,745 controls). (Figure 1, Supplementary 

Table 1). We observed little evidence of over-inflation in the test statistics (λ ≤ 1.04 for each study; 

λ=1.04 for meta-analysis) (Supplementary Figure 1).  A total of 86 SNPs were associated with ER-
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negative breast cancer at P ≤ 10-5 (Supplementary Table 2).  An in silico replication of the 86 SNPs was 

conducted using GWAS of European (BCAC combined), Latino (MEC-LAT, SFBCS/NC-BCFR) and 

Japanese (MEC-JPT) ancestry populations, totaling 11,209 breast cancer cases (946 with ER-negative 

disease) and 8,404 controls (Stage 2)(Supplementary Table 1).  

Combining results for ER-negative breast cancer from stages 1 and 2, variants in three regions 

showed genome-wide significance [20q11-rs2284378, T allele: odds ratio, OR=1.16, P = 1.1x10-8 (Table 

1); 19p13-rs8100241, G allele: OR=1.14, P=3.5x10-8; 6q25-rs9383938, T allele: OR=1.28, P = 2.37 x 10-

10 ].  Variants at 6q25 have previously been associated with breast cancer risk(8), and variants at the 

19p13 locus have been associated with ER-negative and TN breast cancer risk(5, 7). The rs2284378 

variant at 20q11 is located in a region containing RALY (RNA binding protein, autoantigenic), EIF2S2 

(eukaryotic translation initiation factor 2, subunit 2 beta) and ~100kb upstream of ASIP (agouti signaling 

protein), and is in high linkage disequilibrium (r2=0.96 and D'=1) with rs4911414, which has been 

associated with melanoma and basal cell carcinoma(9) (Supplementary Figure 2). The T allele at 

rs2284378 was associated with an increased ER-negative breast cancer risk (OR>1) in all racial/ethnic 

populations, except Japanese (OR=0.99) (Table 1). However this group had the smallest sample size. 

Furthermore, no significant evidence of heterogeneity was observed by race (P=0.28) or study (P=0.54) 

(Table 1, Supplementary Table 3). When the study was extended to include all available breast cancer 

cases (ER-positive and ER-negative) and controls from the participating GWAS, rs2284378 showed a 

weaker association with overall breast cancer (OR=1.08, P=1.3x10-6 based on 17,868 cases and 43,744 

controls; Table 1) and no evidence for association with ER-positive disease (OR=1.01, P=0.67 based on 

9,965 cases and 22,902 controls (Supplementary Table 5). A case-only analysis of ER-negative versus 

ER-positive breast cancer indicated a highly significant difference in ORs by ER status (P=1.3x10-4, 

Supplementary Table 5). Furthermore, rs2284378 appeared more strongly associated with triple 

negative (TN) breast cancer (OR=1.16; P=6.4x10-3), than ER-negative, PR-negative, HER2-positive 

breast cancer (OR=1.07, P=0.41), although these differences were not statistically significant (case-only 

P=0.44) (Supplementary Table 5).  
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Next, we examined the associations between all candidate loci from stage 1 (n=86 SNPs) and 

overall breast cancer risk using all available breast cancer cases and controls from the studies in stages 1 

and 2 (Figure 1). We identified genome-wide statistically significant associations with variants at 6q25 

(rs9383938, T allele: OR=1.20; P=8.7x10-14), and a recently reported risk locus near the PTHLH gene at 

12p11 (rs1975930, T allele: OR=1.22; P=1.4x10-13)(10).  In addition, we observed genome wide 

significant associations with multiple variants in a gene-desert located at 6q14.  Allele C of rs17530068 at 

6q14 was associated with increased risk for overall breast cancer risk (OR=1.12; P=1.1x10-9) (Table 2, 

Supplementary Figure 3, Supplementary Table 4) and both ER-positive (OR=1.09; P=1.5x10-5) 

(Supplementary Table 6) and ER-negative (OR=1.16, P=2.5x10-7) (Table 2) breast cancer.  We 

observed no evidence of risk heterogeneity for rs17530068 by ER status (case-only analysis P=0.53) 

(Supplementary Table 6); study (Phet=0.16); or race/ethnicity (Phet =0.30) (Table 2).  Furthermore, 

rs17530068 appeared more strongly associated with ER-negative, PR-negative, HER2-positive breast 

cancer (OR=1.26, P=8.0x10-3), than TN breast cancer (OR=1.12, P=0.07), although these differences 

were not statistically significant (case-only P=0.17) (Supplementary Table 6).   

We also evaluated associations for 25 known breast cancer risk markers in European-ancestry 

women from our study (Supplementary Table 7 and Supplementary Figure 4). In our samples 8 of the 

13 markers previously associated with both ER-negative and ER-positive disease or with ER-negative 

disease only (TERT and 19p13.1), were nominally significantly associated (P<0.05) with ER-negative 

disease. In contrast, none of the 10 markers previously associated with ER-positive disease only were 

associated with ER-negative disease. A risk score formed by summing the risk alleles at all 25 previously 

identified loci was significantly associated with ER-negative disease in our study (OR=1.06 (1.04-1.07); 

P=2.9 x10-14). Risk scores for subsets of markers associated with ER-negative disease only (2 markers) or 

both ER-negative and ER-positive disease (11 markers) were also significantly associated with ER-

negative disease (OR=1.22 (1.14-1.31), P=1.0 x10-8 and OR=1.08 (1.05-1.10), P=9.5 x10-12, 

respectively). A risk score for the subset of loci previously associated with ER-positive disease only (10 

markers) was not associated with risk of ER-negative disease (OR=1.02 (1.00-1.04), P=0.08). These score 
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results provide some confirmation of earlier results and an estimate of the effects of previously-identified 

breast cancer risk markers on risk of ER-negative disease.  

DISCUSSION  

We present results from the largest meta-analysis to date to specifically focus on ER-negative disease. We 

identify two novel loci for breast cancer:  20q11 associated with ER-negative and triple negative, but not 

ER-positive breast cancer, and 6q14 associated with both ER-positive and ER-negative breast cancer.  In 

addition, we confirm three known regions previously associated with ER-negative (19p13) or ER-

negative and ER-positive breast cancer (6q25 and 12p11). Correction for genomic control results in 

similar but attenuated findings for 20q11-rs2284378 (PGC=2.4x10-8) and 6q14-rs17530068 (PGC =3.2x10-

9).  

The novel association at 20q11 with ER-negative breast cancer spans the ASIP, RALY and 

EIF2S2 genes. Agouti signaling protein (product of the ASIP gene) was first described to inhibit 

melanogenesis in human melanocytes in 1997(11).  ASIP is a melanocortin 1 receptor (MC1R) ligand 

that antagonises the function of the transmembrane receptor(12).  The variants we identified at 20q11 for 

breast cancer are highly correlated with variants previously associated with pigmentation traits as well as 

risk of both cutaneous melanoma and basal cell carcinoma(9), suggesting a possible biological link 

between these cancers.  Further studies have confirmed the importance of the genetic variation spanning 

the ASIP locus, where a variant at 20q11 showed the strongest association with pigmentation and was 

implicated in a probable linkage disequilibrium (LD) with variants within an ASIP regulatory region(13).  

EIF2S2 encodes eukaryotic translation initiation factor 2, subunit 2 beta, which is involved in early steps 

of protein synthesis by forming a ternary complex with GTP and initiator tRNA. The deletion of Eif2s2 

has been associated with suppression of testicular germ cell tumor incidence and recessive lethality in 

mice(14).  The agouti-yellow (AV) deletion is a genetic modifier known to suppress testicular germ cell 

tumor susceptibility in mice and humans.  The AV mutation deletes both RALY and Eif2s2, and induces 

the ectopic expression of agouti, all of which are potential testicular germ cell tumor-modifying variations 
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(14). Both RALY and EIF2S2 are expressed in many tissues including mammary gland(15).  SNP 

rs2284378 was not consistently associated with expression of EIF2S2, RALY, or ASIP in lymphocytes 

(11), adipocytes or skin cells(16)although there was marginal evidence for association between rs2284378 

and EIF2S2 expression in one study (16)(Supplementary Table 8). However, several SNPs in high 

linkage disequilibrium with SNP rs2284378 (r2>0.8) within a 1MB region were significantly associated 

with expression of nearby genes EIF2S2 and RALY. Rs4911379 (r2=0.96) is statistically significantly 

associated with EIF2S2 expression in fibroblasts (P=3.6 x10-4) (17)and SNPs rs761238 and rs761236 

(r2=0.85) are associated with RALY expression in lymphocytes (P=8.3x10-4)(16).   An additional 13 SNPs 

(r2>0.85) have been associated with expression of RALY, GGTL3, DYNLRB1, and AK054906 in liver 

cells, monocytes and lymphoblastoid cell lines (Supplementary Table 9). In addition to expression, 

several enhancer as well as promoter regions defined by overlapping chromatin marks in human 

mammary epithelial cells were found at 20q11 (Supplemental Figure 5). SNPs in high LD with 

rs2284378 (r2>0.7), such as rs4911395, rs4911396 and rs1007090, are located in the promoter region of 

RALY. SNPs rs6142101, rs6087557, and rs4911408 (r2>0.7) are present in the promoter region of 

EIF2S2, and rs1054534, rs1555075, rs2268086, rs2268088, rs4911401, rs2284388, rs2284389 and 

rs932388 are located in predicted enhancer regions in introns of RALY. Thus, variants at 20q11 may 

influence expression of multiple genes in mammary epithelial cells, as has been seen in prostate cancer 

(18).  

In contrast, rs17530068 at 6q14 is located in a gene desert with no evidence of an open/active 

regulatory region in human mammary epithelial cells (Supplementary Figure 6). The closest gene 

(~262kb), family with sequence similarity 46, member A (FAM46A/C6orf37), encodes a protein of 

unknown function.  Five SNPs in this region in low linkage disequilibrium with SNP rs17530068 

(r2<0.02) were associated with expression of IBTK in lymphoblastoid cell lines (Supplementary Table 

10).  Additional studies of both of these novel regions will be necessary to identify the underlying 

biologically relevant variant/s. 
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SNP rs17530068 at chromosome 6q14 was associated with overall breast cancer risk and showed 

no differential association depending on ER status. The association of SNP rs2284378 at 20q11, however, 

was stronger for ER-negative than ER-positive breast cancer. This finding underscores the importance of 

investigating genetic variants for specific subtypes of breast cancer, as this locus had not been previously 

identified in the many GWAS of breast cancer to date that did not focus on this specific breast cancer 

subtype. The etiology of ER-negative disease is largely unknown. Identifying new loci associated with 

ER-negative and TN breast cancer will continue to provide insight into the biological mechanisms 

underlying this more aggressive form of breast cancer, and could result in improvements in risk prediction 

and treatment.  

  

MATERIALS AND METHODS 

Study populations  

Stage 1 included the studies of the NCI Breast and Prostate Cancer Cohort Consortium (BPC3), Triple 

Negative Breast Cancer Consortium (TNBCC) and African American Breast Cancer Consortium 

(AABC).  The BPC3 study includes 2,188 ER-negative cases and 25,519 controls, AABC includes 3,153 

cases (1,004 ER-negative) and 2,745 controls from 9 studies and TNBCC includes 1,562 cases and 3,399 

controls from 15 studies (Supplementary Table 1).  Replication studies include 886 cases (84 ER-

negative) and 830 controls from a GWAS of breast cancer in Japanese (MEC-JPT) women and 546 cases 

(112 ER-negative) and 558 controls from a GWAS of breast cancer in Latino (MEC-LAT) women in the 

Multiethnic Cohort (MEC), 992 (188 ER-negative) and 640 controls from the San Francisco Bay Area 

Breast Cancer Study (SFBCS) and the Northern California Breast Cancer Family Registry (NC-BCFR), 

and 8,785 (562 ER-negative) and 14,029 controls from eight combined GWAS of breast cancer from 

BCAC.  All participants in these studies have provided written consent for the research and approval for 

the study was obtained from the ethical review board from all local institutions.  A description of each 

participating study has been provided in supplementary material.  
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Stage 1 genotyping and quality control 

Genotyping in AABC was conducted using the Illumina Human1M-Duo BeadChip. Of the 5,984 samples 

in the AABC Consortium (3,153 cases and 2,831 controls), we attempted genotyping of 5,932, removing 

samples (n=52) with DNA concentrations <20 ng/ul.  Following genotyping, we removed samples based 

on the following exclusion criteria: 1) unknown replicates (≥98.9% genetically identical) that we were 

able to confirm, n=15); 2) unknown replicates pair or triplicate removed, n=14); 3) samples with call rates 

<95% after a second attempt (n=100); 4) samples with ≤ 5% African ancestry (n=36) (discussed below); 

and, 5) samples with <15% mean heterozygosity of SNPs in the X chromosome and/or similar mean 

allele intensities of SNPs on the X and Y chromosomes (n=6). In the analysis, we removed SNPs with 

<95% call rates (n=21,732) or minor allele frequencies (MAFs) <1% (n=80,193).  The concordance rate 

for blinded duplicates was 99.95%. We also eliminated SNPs with genotyping concordance rates <98% 

based on the replicates (n=11,701). The final analysis dataset included 1,043,036 SNPs genotyped on 

3,016 cases (988 ER-negative, 1520 ER-positive, and the remaining 508 cases with unknown ER status) 

and 2,745 controls, with an average SNP call rate of 99.7% and average sample call rate of 99.8%.   

Genotyping for the TNBCC GWAS was conducted on 1,718 cases from 10 studies (ABCTB, 

BBCC, DFCI, FCCC, GENICA, MARIE, MCBCS, MCCS, POSH, SBCS) using the Illumina 660-Quad 

SNP array. In addition, a subset of MARIE cases (n=52) were genotyped using the Illumina CNV370 

SNP array. HEBCS cases (n=85) were genotyped using the Illumina 550 SNP array and population allele 

and genotype frequencies on healthy population controls (n=222) were genotyped on  Illumina 370 SNP 

array,  and obtained from the NordicDB,  a Nordic pool and portal for genome-wide control data(19) from 

the Finnish Genome Center. GWAS data for public controls (n=3,448) were generated using the 

following arrays: Illumina 660-Quad SNP array (QIMR), Illumina 550 SNP array (CGEMS), Illumina 

550 SNP array (KORA), and Illumina 1.2M (WTCCC). These GWAS data were independently evaluated 

by an iterative QC process with the following exclusion criteria: minor allele frequency (MAF) <0.01, 

call rate <95%, HWE p-value <1x10-7 among controls and sample call rate <98%. In total, we excluded 

previously unknown replicates (n=2) and samples with call rates <98% (n=83), samples that failed sex 



16 
 

check (n=10), cases identified as non-triple negative breast cancer (n=20) and related samples (n=27). 

 We removed SNPs with <95% call rates or MAF <5%.  Because a number of our samples were 

genotyped at different locations, we removed SNPs if there was a difference >0.10 between the study 

allele frequency and the median frequency across all studies.  Eigensoft software which uses principle 

component analysis (PCA) was used to evaluate confounding due to population stratification.  We 

removed 101 subjects that did not cluster with the CEU HapMap Phase 2 samples, and a further 179 

controls were removed which overlapped with CGEMS/NHS controls in BPC3, resulting in 1,562 cases 

and 3,399 controls in the GWAS analyses.   

 BPC3 GWAS genotyping was conducted at three genotyping centers (NCI Core Genotyping 

Facility, USA; University of Southern California, USA; and Imperial College London, UK).   Subjects 

from CPSII, EPIC, MEC, PLCO, and PBCS were genotyped using the Illumina Human 660k-Quad SNP 

array(Illumina, Inc), NHSI/NHSII and part of the PLCO study were genotyped previously using the 

Illumina Human 550 SNP array(Illumina, Inc) (20).  SNPs were filtered and removed based on deviations 

from Hardy-Weinberg proportions in control subjects (p<10e-5), autosomal SNPs with MAF of less than 

5% and completion rate less than 95%. Samples were excluded based on genotyping call rates less than 

95% (n=195), samples with extreme heterozygosity were excluded from the analysis (n=35), sex 

discordance (n=3), unexpected duplicates and relatedness (n=6), Subjects with evidence of significant 

non-European ancestry and population structure were also excluded.  Non-European ancestry was 

assessed utilizing a subset of unlinked, population informative SNPs (21).  Individuals determined to have 

less than 80% European ancestry were excluded from future analyses (n=16).  The average concordance 

rate of blinded duplicates was 99.95%. In order to resolve a more detailed population substructure, PCA 

was conducted using struct.pca module of GLU (http://code.google.com/p/glu-genetics/).  PCA was only 

performed in subjects with over 80% European ancestry.  Furthermore, 958 controls from NHS (CGEMS) 

were removed from BPC3 analyses due to overlap between TNBCC and BPC3 studies.  The overall 

number of cases and controls after all exclusions which contributed to the stage 1 analysis were 1,998 

cases and 2,305 controls. 
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The WHS cohort subjects in BPC3 were previously genotyped using the Human-Hap300 Duo-

plus BeadChip (22).  Among the final 23,294 individuals of verified European ancestry, genotypes for a 

total of 2,608,509 SNPs were imputed from the experimental genotypes and LD relationships implicit in 

the HapMap r. 22 CEU samples.  WHS contributed 190 cases and 23,214 control subjects to stage 1. 

WHS was meta-analyzed with the remaining BPC3 studies contributing a total of 2,188 cases and 25,519 

control subjects to stage 1 analysis. 

SNP rs2284378 and rs17530068 were genotyped in all stage 1 studies. 

Stage 2 genotyping and quality control   

The San Francisco Bay Area Breast Cancer Study (SFBCS)(23)and the Northern California Breast Cancer 

Family Registry (NC-BCFR)(24) study samples were genotyped with the Affymetrix 6.0 array according 

to the manufacturer’s instructions (https://www.affymetrix.com) in the laboratory of Esteban Gonzalez 

Burchard at UCSF. A total of 15 cases and 30 controls were excluded from the SFBCS and NC-BCFR 

sample set that had a genotyping call rate <95% or showed either known or cryptic relatedness. The final 

sample included in the analysis was 992 cases (188 ER-negative cases) and 640 controls. Imputation was 

conducted with the program BEAGLE, with all unrelated HapMap Phase II samples included as 

references (http://hapmap.ncbi.nlm.nih.gov). 

GWAS of breast cancer in Latino (MEC-LAT) and Japanese (MEC-JPT) samples from the MEC 

were genotyped with the Illumina 660W array at USC.  For MEC-LAT, we excluded 48 samples from the 

MEC that had a genotyping call rate of <95% and 34 that showed either known or cryptic relatedness. 

The final MEC-LAT sample included 546 (112 ER-negative) and 558 controls. With similar exclusions, 

the final MEC-JPT sample included 886 (84 ER-negative) and 830 controls. 

The BCAC combined GWAS includes primary genotype data from eight breast cancer GWAS in 

populations of European ancestry (ABCFS, BBCS, , GC-HBOC, MARIE, HEBCS, SASBAC, UK2, 

DFBBCS).  All studies were genotyped with various versions of Illumina arrays, except GC-HBOC 

which was performed with the Affymetrix 5.0 (cases) and 6.0 (controls) arrays.  Standard QC was 

performed on all scans. Specifically, all individuals with low call rate (<95%), extreme high or low 
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heterozygosity (P<10-5), and all individuals evaluated to be of non-European ancestry (>15% non-

European component, by multidimensional scaling using the three Hapmap2 populations as a reference) 

were excluded. SNPs with call rate <95%; call rate <99% and MAF<5%, all SNPs with MAF<1%, and 

SNPs with genotype frequencies departing from Hardy-Weinberg equilibrium at P<10-6 in controls or 

P<10-12 in cases were also excluded. Data were imputed for ~2.6M SNPs for all scans using Mach v1.0 

with HapMap version 2 CEU as a reference. BBCS and UK2 used the same control data (WTCCC2).  

These studies were imputed separately.  For the combined analysis, the control set was divided randomly 

between the two studies, in proportion to the size of case series, to provide disjoint strata. Estimated per-

allele ORs and standard errors were generated from the imputed genotypes using Probabel (25). 

SNP rs2284378 and rs17530068 were genotyped in all stage 2 studies except SFBCS and NC-

BCFR where they were imputed. Both SNPs were genotyped by TaqMan in 483 samples from these 

studies and genotype concordance versus imputed genotypes was 93.3% for rs2284378 and 94.9% for 

rs17530068. 

 

Taqman gentoyping in BPC3 for SNP rs2284378 and SNP rs17530068 

In BPC3, genotyping of SNP rs2284378 and rs17530068 was performed for all available breast cancer 

cases and controls by TaqMan in four laboratories (CPS-II and MEC at the University of Southern 

California; NHS and WHS at Harvard University; EPIC at the German Cancer Research Center in 

Heidelberg; and PLCO at the NCI/Core Genotyping Facility).  All studies typed SNP rs17530068; 

however for SNP rs2284378, PLCO and CPS-II typed a proxy SNP rs6059651 (r2 =1, D’=1).   The 

concordance for the Taqman genotyping data with that generated from Illumina for stage 1 ER-negative 

cases and controls was 0.997 for rs17530068 and 0.986 for rs2284378 for CPS2, MEC, NHS, EPIC and 

PLCO.  The genotype concordance versus imputed for WHS was 95% for rs2284378 and 97% for 

rs17530068 

 

Statistical analysis   
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In AABC, we tested for gene dosage effects in models adjusted for age, study and eigenvectors 1-10. 

Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic 

regression.  In TNBCC, unconditional logistic regression was used to assess single SNP associations also 

assuming a log-additive model, adjusting for country and the first two principal components. In BPC3, 

unconditional logistic regression model was used to assess single SNP associations adjusting for age 

categories and the top 6 eigenvectors. 

In both AABC and TNBCC, phased haplotype data from the founders of the CEU and YRI 

HapMap Phase 2 samples (build 21) were used to infer LD patterns in order to impute untyped markers. 

For BPC3, Hapmap Phase 2 (release 21) and Hapmap Phase 3 were used to impute untyped markers.  For 

all studies, genome-wide imputation was carried out using the software MACH.  Filtered from the 

analysis were SNPs with Rsq<0.3 and MAF <1%.  

We conducted a fixed effect meta-analysis of AABC, TNBCC and BPC3 using the inverse 

variance weighted method.  The number of SNPs available for meta-analysis from AABC, TNBCC and 

BPC3 in stage 1 were 3,055,415, 2,134,490 and 245,3207 respectively.  The union of these three data sets 

was meta-analyzed using the program METAL.  We conducted in silico replication of 86 SNP with p-

values ≤ 10-5 in stage 1 in the stage 2 studies, and a meta-analysis of these SNPs from stage 1 and 2 for 

both ER- negative and overall breast cancer.  P-values from our top two loci were corrected for genomic 

inflation (PGC) using the lambda value from the overall meta-analysis.  Testing for heterogeneity by study 

was evaluated using the Q-statistic. Case-only analyses were performed to test for differences in the 

association by tumor subtypes, study and race/ethnicity. 

The association between risk scores of 25 previously-identified breast cancer risk alleles and risk 

of breast cancer in our samples was calculated using meta-regression, assuming the per-allele odds ratio 

was constant across the markers analyzed. This is equivalent to combining the summary log odds ratio 

estimates at independent loci using inverse-variance weighted meta-analysis. The overlap between 

subjects contributing to this study and those contributing to previous studies varied from marker to 

marker (e.g. the TNBCC contributed to the initial report on rs8170 (5) and the BPC3 and TNBCC 
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contributed to the initial report on the TERT locus (6).Thus, the results could be overestimates since some 

of the studies here contributed to the discovery of these 25 loci. 

 

 

Functional analysis   

Expression quantitative trait loci (eQTL) were assessed for all SNPs in the chromosome 6 and 20 loci  

using the GTEX database (http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi), University of Chicago 

eQTL Browser (http://eqtl.uchicago.edu) and Genevar 

(http://www.sanger.ac.uk/resources/software/genevar/) (26) 

In an attempt to identify functionality at the two novel breast cancer risk loci, we used the open-

source R/Bioconductor package FunciSNP version 0.99(27), which systematically integrates the 1,000 

Genomes Project SNP data (April 2012 data release) with chromatin features of interest. For each of the 

two novel breast cancer markers, we analyzed all SNPs with an r2 value > 0.5 with each index SNP in the 

1,000 Genomes Project EUR populations in a 1MB window around each index variant. We assessed 

whether these SNPs were co-located with 12 different chromatin features generated by next-generation 

sequencing technologies, which capture open chromatin regions, promoters, and enhancers genome-wide 

in human mammary epithelial cells (HMEC) as well as known DNaseI hypersensitive locations, FAIRE-

seq peaks, and CTCF binding sites from more than 100 different cell types, which were collected in 

ENCODE data(28). We utilized the UCSC Genome Browser (http://genome.ucsc.edu/) to illustrate the 

correlated SNPs, which overlap chromatin features as well as chromatin feature tracks (Supplemental 

Figures 5-6). 
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LEGEND 

Figure 1.  Multi-stage study design.
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Table 1.  Association of SNP rs2284378 (T/C) at chromosome 20q11 and breast cancer risk by study and race/ethnicity 

Consortium/ 

Study 

Race/ 

Ethnicity 

Case/  

controla 

RAF 

(T allele)b 

OR  

(95% CI)c 

P-valued PHet-study/ 

PHet-race
e 

Stage 1 ER-negative cases versus controls      

BPC3  European  2,188/25,519 0.31 1.14 (1.05-1.24) 0.0028  

TNBCC  European 1,478/3,345 0.33 1.18( 1.07-1.30) 0.0010  

AABC  African 1,004/2,744 0.16 1.19 (1.03-1.37) 0.020  

Stage 1   4,670/31,608  1.16 (1.09-1.23) 6.5x10-7 0.85/0.76 

Stage 2  ER-negative cases versus controls      

BCAC Combined GWAS European 562/6410 0.35 1.10 (0.96-1.25) 0.17  

MEC-JPT Japanese 84/830 0.26 0.99 (0.68-1.44) 0.95  

MEC-LAT Latino 112/553 0.29 1.27 (0.94-1.71) 0.13  

SFBCS/NC-BCFR Latino 188/611 0.29 1.45 (1.13-1.87) 0.004  

Stage 2 (ER-negative)  946/8,404  1.16 (1.04-1.29) 0.0048 0.98/0.12 

Stage 1+2 (ER-negative)  5,616/40,012  1.16 (1.10-1.22) 1.1x10-8 0.54/0.28 

All breast cancer cases versus controls       

AABC African 3,016/2,745 0.16 1.06 (0.95-1.17) 0.30  

BCAC Combined GWAS  European 8,785/10,142 0.35 1.04 (0.99-1.09) 0.11  

MEC-JPT Japanese 886/830 0.26 1.08 (0.91-1.24) 0.46  

MEC-LAT Latino 546/553 0.29 1.24 (1.03-1.48) 0.021  

SFBCS/NC-BCFR Latino 970/611 0.29 1.23 (1.05-1.44) 0.011  

Stage 2 (all cases)  14,202/14,880  1.06 (1.02-1.10) 0.0025 0.14/0.073 

Stage 1+2 (all cases)  17,869/43,745  1.08 (1.05-1.12) 1.3x10-6 0.056/0.19 

aNumber of cases and controls with genotype data for rs2284378. bRisk Allele Frequency (RAF) in controls. cAdjusted for age, study 

and principal components in AABC. Adjusted for age and country in TNBCC.   Adjusted for age categories and top 6 eigenvectors in 

BPC3.    Adjusted for age and top 10 eigenvectors in MEC-JPT, MEC-LAT and SFBCS/NC-BCFR studies.  Combined analysis 

(Stage1, Stage2 and Stage 1+2) are from the meta-analysis.  dP for trend (1-d.f.).  eP for heterogeneity by study and race/ethnicity, 

respectively. 
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Table 2.  Association of SNP rs17530068 (C/T) at chromosome 6q14 and breast cancer risk by study and race/ethnicity 

Consortium/ 

Study 

Race/ 

Ethnicity 

Case/  

controla 

RAF 

(C allele)b 

OR   

(95% CI)c 

P-valued PHet-study/ 

PHet-race
e 

Stage 1 ER-negative cases versus controls      

BPC3 European 2,188/25,519 0.24 1.23 (1.12-1.35) 2.23x10-5  

TNBCC  European 1,478/3,345 0.24 1.13 (1.02-1.26) 0.023  

AABC  African 1,004/2,745 0.07 1.07 (0.86-1.34) 0.54  

Stage 1   4,670/31,609  1.17 (1.09-1.26) 3.5x10-6 0.37/0.41 

Stage 2  ER-negative cases versus controls      

BCAC combined GWAS European 562/6,410 0.22 1.09 (0.95-1.25) 0.24  

MEC-JPT Japanese 84/830 0.19 1.16 (0.79-1.71) 0.45  

MEC-LAT Latino 112/553 0.23 1.06 (0.75-1.50) 0.73  

SFBCS/NC-BCFR Latino 188/611 0.22 1.40 (1.07-1.84) 0.014  

Stage 2 (ER-negative)  946/8,404  1.14 (1.02-1.28) 0.022 0.41/0.52 

Stage 1+2 (ER-negative)  5,616/40,013  1.16 (1.10-1.23) 2.5x10-7 0.54/0.78 

All breast cancer cases versus controls       

AABC African 3,016/2,745 0.07 1.04 (0.89-1.21) 0.63  

BCAC combined GWAS  European 8,785/10,142 0.22 1.08 (1.02-1.14) 0.0021  

MEC-JPT Japanese 886/830 0.19 1.13 (0.96-1.34) 0.14  

MEC-LAT Latino 546/553 0.23 1.21 (0.99-1.47) 0.056  

SFBCS/NC-BCFR Latino 970/611 0.22 1.27 (1.07-1.51) 0.006  

Stage 2 (all cases)  14,203/14,881  1.10 (1.05-1.15) 1.8x10-5 0.31/0.20 

Stage 1+2 (all cases)  17,869/43,745  1.12 (1.08-1.16) 1.1x10-9 0.16/0.30 

aNumber of cases and controls with genotype data for rs17530068. bRisk Allele Frequency (RAF) in controls. cAdjusted for age, study and 

principal components in AABC.  Adjusted for age and country in TNBCC.   Adjusted for age categories and top 6 eigenvectors in BPC3.   

Adjusted for age and top 10 eigenvectors in MEC-JPT, MEC-LAT and SFBCS/NC-BCFR studies.  Combined analysis (Stage1, Stage2 

and Stage 1+2) are from the meta-analysis.  dP for trend.  eP for heterogeneity by study and race/ethnicity, respectively. 
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ABBREVIATIONS 

ER=Estrogen Receptor 

PR=Progesterone Receptor 

SNP=Single nucleotide polymorphism 

GWAS=Genome-wide Association Study  

OR=Odds Ratio 

BPC3=NCI Breast and Prostate Cancer Cohort Consortium  

TNBCC=Triple Negative Breast Cancer Consortium  

AABC=African American Breast Cancer Consortium  
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